

## Fire & Rescue NSW

Deniliquin Training Facility Environmental Site Assessment - PFAS

April 2017



27 April 2017

Sally Langley Fire & Rescue NSW PO Box A249 Sydney South NSW 1232 Our ref: Your ref: 21/25583

Dear Sally

# Fire and Rescue NSW - Deniliquin Training Facility Environmental Site Assessment - PFAS Addendum 1

## 1 Introduction

Between November 2016 and January 2017, GHD completed a combined preliminary and detailed site investigation at the Deniliquin Training Facility located at Deniliquin airport, NSW 2710 (the site). The site has historically been used for the training of firefighters, which has potentially included the use of aqueous film forming foams (AFFF). The foams used may have contained perfluoro alkyl substances (PFAS), which are potentially harmful to human health and the environment.

The findings of the environmental site assessment (ESA) are presented in:

• GHD Pty Ltd (2017) Report for Fire and Rescue NSW – Deniliquin Training Facility Environmental Site Assessment – PFAS. Final Report, April 2017 (the ESA report).

This addendum has been prepared following the release of new guidelines since the completion of the ESA report. This addendum must be read in conjunction with the GHD 2017 ESA report.

## 2 Basis for assessment

As a result of the emerging nature of this issue, screening criteria for the assessment of PFAS impacted sites are still in the process of being developed in Australia. Only a few values have been published by Australian regulatory agencies, some of which are interim, draft or are "to be reviewed".

Section 5 of the ESA report outlines the investigation levels used for the purpose of screening data reported from soil, groundwater, surface water and sediment samples collected during the ESA (GHD, 2017).

For the purpose of screening groundwater and surface water data, reference was made to the interim screening criteria released by the Western Australia Department of Environment and Regulation (DER)<sub>1</sub> which are based on the enHealth (2016)<sub>2</sub> recommendations.

<sup>&</sup>lt;sup>1</sup> Department of Environment Regulation (DER), January 2017. Interim Guideline on the Assessment and Management of Perfluoroalkyl and Polyfluoroalkyl Substances (PFAS), Contaminated Sites Guidelines, Government of Western Australia (WA)

<sup>&</sup>lt;sup>2</sup> EnHealth, June 2016. Interim national guidance on human health reference values for per- and poly-fluoroalkyl substances for use in site investigations in Australia

In April 2017, Food Standards Australia New Zealand (FSANZ) released new guidance for the assessment of PFAS impacted sites. These new guidelines resulted in a reduction of the Tolerable Daily Intake (TDI) for key contaminants of concern including

- Perfluorooctane sulfonate (PFOS)
- Perfluorohexane sulfonate (PFHxS)
- Perfluorooctanoic acid (PFOA)

Changes to the TDI resulted in re-calculation of health based screening levels for the protection of drinking water and recreational water resources. These new values supersede the previous enHealth (2016) interim screening levels which were the basis of GHD's interpretation of data as outlined in the ESA report. Comparison of the FSANZ screening values, and the previous enHealth (2016) guidelines is provided in **Table 1**.

#### Table 1 Screening level comparison

| Toxicity Reference Value             | PFOS /          | PFHxS        | PFOA            |              |  |
|--------------------------------------|-----------------|--------------|-----------------|--------------|--|
|                                      | enHealth (2016) | FSANZ (2017) | enHealth (2016) | FSANZ (2017) |  |
| TDI                                  | 0.15 ug/kg/d    | 0.02 ug/kg/d | 1.5 ug/kg/d     | 0.16 ug/kg/d |  |
| Drinking water quality guideline     | 0.5 ug/L        | 0.07 ug/L    | 5 ug/L          | 0.56 ug/L    |  |
| Recreational water quality guideline | 5 ug/L          | 0.7 ug/L     | 50 ug/L         | 5.6 ug/L     |  |

The revised FSANZ values focus on the assessment of potential risks to human health. These guidelines do not change any screening levels for the protection of ecological receptors and the screening criteria referenced in the ESA report (GHD, 2017) remain valid at the time of issue of this addenda.

### 3 Data review

**Table 2** presents a summary of the groundwater and surface water data reported by GHD (2017) compared against the new FSANZ guidelines. For analytical data, reference is made to the ESA report.

| Summary information                                              | Groundwater Data                                                                                                                                            | Surface Water Data                                                                                                                                                   |
|------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Number of samples collected                                      | Three groundwater samples were<br>collected from on-site locations<br>(MW01 to MW03)                                                                        | Three off-site surface water samples were<br>collected from surface water receptors down-<br>gradient of the site.                                                   |
| Review of data for<br>protection of<br>drinking water<br>quality | One location (MW01) reported<br>concentrations of PFOS / PFHxS<br>above the FSANZ (2017) screening<br>value for the protection of drinking<br>water quality | All three surface water samples reported<br>concentrations of PFOS / PFHxS above the<br>FSANZ (2017) screening value for the protection of<br>drinking water quality |

#### Table 2 Interim data review

| Summary information                                                  | Groundwater Data                                                                                                                                                   | Surface Water Data                                                                                                                                                                    |
|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Review of data for<br>protection of<br>recreational water<br>quality | One location (MW01) reported a concentration of PFOS/PFHxS in groundwater above the FSANZ (2017) screening value for the protection of recreational water quality. | Two surface water sampling locations (SW01 and SW03), reported concentrations of PFOS / PFHxS above the FSANZ (2017) screening value for the protection of recreational water quality |

Overall, the changes to the guidelines has resulted in the following changes to the interpretation of data reported by GHD (2017):

- Groundwater sample MW01 previously reported PFAS concentrations above the nominated enHealth (2016) screening values for the protection of drinking water. Concentrations in MW02 and MW03 were below the laboratory limit of reporting. The revision to the FSANZ (2017) guidelines does not impact on the overall interpretation of this data or the conceptual site model (CSM) prepared to assess contaminant source – pathway - receptor relationships.
- One additional surface water sample (SW02) now reports a concentration of PFOS / PFHxS above the screening value for the protection of drinking water. Two samples (SW01 and SW03) now report concentrations of PFOS / PFHxS above the screening criteria for the protection of recreational water quality.
- GHD is currently embarking on a program of further site investigations including additional groundwater and surface water investigations. As part of these works, a water use survey is being released to understand surface water usage in the area and further assist in the assessment of the potential for exposure to PFAS impacted waters.

A detailed review of all data with respect to the new guidelines will be undertaken as part of the next stage of investigation and full interpretation of all results will be reported at the completion of these works.

Sincerely GHD Pty Ltd

Hallchinh

Jacqui Hallchurch Principal Environmental Scientist 02 9239 7046

## **Executive summary**

GHD Pty Ltd (GHD) was commissioned by Fire and Rescue NSW (FRNSW) to undertake a combined preliminary and detailed site investigation at the firefighting training site at Deniliquin Airport, NSW 2710 (the 'site').

The site is used for the training of firefighters, which has potentially included the use of aqueous film forming foams (AFFF). The AFFF used, may have contained perfluoro alkyl substances (PFAS) including perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA), which are potentially harmful to human health and the environment.

The site is owned by Deniliquin Council NSW. The site is currently used by FRNSW as a firefighting training facility and is part of Deniliquin airport (Figure 1, Appendix A). The site is bound by Deniliquin airport to the west, south and east, and Macknight Drive, then vacant land to the north. The site was used as a station for the Royal Australian Air Force (RAAF), during the Second World War as part of the Empire Air Training Scheme (No. 7 Service Flying Training School).

The overall objective of the investigation is to characterise impacts and subsequently assess the potential risks to human health and the environment from historical firefighting training activities (specifically those involving PFAS) in the FRNSW site.

The scope of work comprised:

- Drilling and installation of three groundwater monitoring wells (MW01 to MW03) and five soil bores (SB01 to SB05).
- Collection of seven sediment samples (SS01 to SS07) and three surface water samples (SW01 to SW03).
- A groundwater monitoring event (GME) of the three new groundwater wells.
- Laboratory analysis of selected soil, sediment, surface water and groundwater samples for chemicals of potential concern (COPC) including:
  - PFAS, metals including aluminium, silicon and potassium, total organic carbon (TOC), total iron, grain size and cation exchange capacity in soils and sediments.
  - PFAS, major ions and alkalinity, total dissolved solids (TDS) and pH in groundwater and surface water.
- Laboratory analysis of a selection of soil and sediment samples for Australian standard leaching procedure (ASLP) and two soil samples for toxicity characteristics leaching procedure (TCLP)
- Surveying of newly installed wells.

Based on this scope of works and subject to the limitations presented in Section 11, the following conclusions are made:

• The inferred groundwater flow was in a northerly direction, and regional flows are likely to be towards the east and north. GHD notes that this interpretation of groundwater flow direction is based on a small number of wells (three) over a relatively large surface area and as such, groundwater flow direction should be reviewed in the context of the available site data.

All soil results were below the nominated screening criteria for all COPC for the protection of human health. Risks associated with direct contact or accidental ingestion of PFAS impacted soils on site is therefore considered low, however the presence of PFAS in soils

represents a potential on-going source and risk to groundwater and surface water receptors.

- Leachability testing confirmed that PFAS impacted soils and sediments have the potential to release PFAS to the environment at concentrations exceeding the nominated screening levels.
- All off-site sediment samples reported detects of PFAS. This indicates that PFAS is likely to be migrating off-site via the surface water drainage pathways.
- Based on the EnRisk (2016) decision tree process for prioritisation, the site is currently classified as a priority 1 site based on detections of PFAS in soil and surface water at concentrations exceeding trigger value 1. It is important to note that the trigger point system has not been designed to be protective of all risks to people or the environment but is designed to assist with prioritisation of sites for further assessment and management.

Based on the findings of these works, the following recommendations are made:

- A survey of water use be conducted to better characterise groundwater and surface water use down gradient of the FRNSW site. This should include investigation into how often the final surface water dams along the drainage line would over top.
- Consideration of immediate management actions which can be implemented to address the mass of PFAS present on site and minimise further migration. These management actions may include, but not be limited to:
  - Drainage channels between the dams could be cleared out to remove soils and sediments which are likely to act as potential leaching sources.
  - Removal of impacted soils under and around the fire training area on the central to southern portion of the FRNSW site to remove the primary source zone.
- Additional sampling should be undertaken following the implementation of any management actions. Sampling should be undertaken to accommodate seasonal fluctuation and, for example, following rainfall events to enable assessment of the areas where surface water collects from the ponds.
- Additional off site investigation to assess whether impacted groundwater is migrating towards other potential abstraction points down gradient of the site towards the east and north-east.

## Glossary

| Abbreviation | Description                                                     |
|--------------|-----------------------------------------------------------------|
| AHD          | Australian Height Datum                                         |
| ALS          | Australian Laboratory Services                                  |
| ANZECC       | Australian and New Zealand Environment and Conservation Council |
| BTEXN        | Benzene, toluene, ethylbenzene, xylenes and naphthalene         |
| COC          | Chain of custody                                                |
| COPC         | Contaminants of potential concern                               |
| CSM          | Conceptual site model                                           |
| DBYD         | Dial Before You Dig                                             |
| DO           | Dissolved oxygen                                                |
| DQI          | Data quality indicator                                          |
| DQO          | Data quality objective                                          |
| DTW          | Depth to water                                                  |
| EC           | Electrical conductivity                                         |
| EIL          | Ecological Investigation Level                                  |
| EPA          | NSW Environment Protection Authority                            |
| ESA          | Environmental Site Assessment                                   |
| ESL          | Ecological Screening Level                                      |
| GIL          | Groundwater Investigation Level                                 |
| GME          | Groundwater monitoring event                                    |
| GPR          | Ground penetrating radar                                        |
| HIL          | Health Investigation Level                                      |
| HSL          | Health Screening Level                                          |
| JSEA         | Job Safety Environmental Analysis                               |
| LOR          | Limit of reporting                                              |
| mAHD         | metres Australian Height Datum                                  |
| m bgl        | Metres below ground level                                       |
| mbTOC        | Metres below top of casing                                      |
| mg/L         | Milligrams per litre                                            |
| NATA         | National Association of Testing Authorities                     |
| NEPC         | National Environment Protection Council                         |
| NEPM         | National Environment Protection Measure                         |
| NHMRC        | National Health and Medical Research Council                    |
| PID          | Photo-ionisation detector                                       |
| QA/ QC       | Quality assurance/ quality control                              |
| REDOX        | Oxidation-reduction potential                                   |
| RPD          | Relative Percent Difference                                     |
| SFOP         | Standard field operating procedures                             |
| SPR          | Source pathway receptor                                         |

| Abbreviation | Description                          |  |  |
|--------------|--------------------------------------|--|--|
| SWL          | Standing water level                 |  |  |
| TOC          | Top of casing                        |  |  |
| TPH          | Total petroleum hydrocarbons         |  |  |
| TRH          | Total recoverable hydrocarbons       |  |  |
| µg/L         | Micrograms per litre                 |  |  |
| UPSS         | Underground Petroleum Storage System |  |  |
| USCS         | Unified Soil Classification System   |  |  |

## **Table of contents**

| 1. | Intro | duction                                         | 1  |
|----|-------|-------------------------------------------------|----|
|    | 1.1   | Background                                      | 1  |
|    | 1.2   | Objective                                       | 1  |
|    | 1.3   | Scope                                           | 1  |
|    | 1.4   | Limitations                                     | 2  |
| 2. | Site  | description                                     | 3  |
|    | 2.1   | Site identification                             | 3  |
|    | 2.2   | Surrounding land use and zoning                 | 3  |
|    | 2.3   | Site environmental setting                      | 3  |
|    | 2.4   | Site layout and key site features               | 6  |
| 3. | Data  | Quality Objectives                              | 7  |
| 4. | Meth  | nodology                                        | 9  |
|    | 4.1   | General                                         | 9  |
|    | 4.2   | Groundwater well installation and soil sampling | 9  |
|    | 4.3   | Sediment sampling                               | 10 |
|    | 4.4   | Groundwater sampling                            | 11 |
|    | 4.5   | Surface water sampling                          | 12 |
| 5. | Asse  | essment criteria                                | 13 |
|    | 5.1   | Basis for assessment                            | 13 |
|    | 5.2   | Rationale for assessment criteria               | 14 |
|    | 5.3   | Nominated PFAS assessment criteria              | 14 |
|    | 5.4   | Assessment criteria –other COPCs                | 16 |
| 6. | Resu  | ults                                            | 18 |
|    | 6.1   | General                                         | 18 |
|    | 6.2   | Quality assurance and quality control           | 18 |
|    | 6.3   | Soil results                                    | 18 |
|    | 6.4   | Sediment results                                | 19 |
|    | 6.5   | ASLP analytical results                         | 19 |
|    | 6.6   | Groundwater and surface water results           | 20 |
| 7. | Disc  | ussion                                          | 22 |
|    | 7.1   | Soil and sediment                               | 22 |
|    | 7.2   | Groundwater and surface water                   | 23 |
|    | 7.3   | EPA site prioritisation                         | 24 |
| 8. | Cond  | ceptual site model                              | 26 |
|    | 8.1   | Sources                                         | 26 |
|    | 8.2   | Receptors                                       | 26 |
|    | 8.3   | Exposure pathways                               | 27 |
|    | 8.4   | Source-pathway-receptor linkages                | 28 |

| 9.  | Conclusions and recommendations |                 |    |
|-----|---------------------------------|-----------------|----|
|     | 9.1                             | Conclusions     | 30 |
|     | 9.2                             | Recommendations | 30 |
| 10. | Refer                           | ences           | 32 |
| 11. | Limita                          | ations          | 34 |

## **Table index**

| Table 2-1 | FRNSW site identification summary                                                 | 3  |
|-----------|-----------------------------------------------------------------------------------|----|
| Table 2-2 | Description of land use surrounding FRNSW site and respective zonings             | 3  |
| Table 2-3 | Review of existing groundwater data                                               | 6  |
| Table 2-4 | Key features                                                                      | 6  |
| Table 3-1 | Investigation boundaries                                                          | 8  |
| Table 4-1 | Groundwater well installation methodology (including soil and soil bore sampling) | 9  |
| Table 4-2 | Sediment sampling methodology                                                     | 10 |
| Table 4-3 | Groundwater sampling methodology                                                  | 11 |
| Table 4-4 | Surface water sampling methodology                                                | 12 |
| Table 5-1 | Nominated screening criteria for surface water and groundwater                    | 14 |
| Table 5-2 | Nominated screening criteria for soil - leachate                                  | 15 |
| Table 5-3 | Nominated screening criteria for soil and sediment                                | 15 |
| Table 6-1 | Generalised lithology encountered                                                 | 18 |
| Table 6-2 | Groundwater Gauging Data                                                          | 20 |
| Table 6-3 | Summary of groundwater quality field parameters                                   | 21 |
| Table 6-4 | Summary groundwater and surface water exceedances                                 | 21 |
| Table 8-1 | Updated CSM                                                                       | 28 |

## **Appendices**

| Appendix A – Figures                                                               |
|------------------------------------------------------------------------------------|
| Appendix B – Analytical results summary tables                                     |
| Appendix C – Field Sampling Sheets and equipment calibration certificates          |
| Appendix D – Borehole Logs                                                         |
| Appendix E – NATA accredited laboratory reports and chain of custody documentation |
| Appendix F – Assessment of data quality                                            |
| Appendix G – Survey Results                                                        |

## 1. Introduction

GHD Pty Ltd (GHD) was commissioned by Fire and Rescue NSW (FRNSW) to undertake a combined preliminary and detailed site investigation at the firefighting training site at Deniliquin Airport, NSW 2710 (the 'site').

The site is used for the training of firefighters, which has potentially included the use of aqueous film forming foams (AFFF). The AFFF used, may have contained perfluoro alkyl substances (PFAS) including perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA), which are potentially harmful to human health and the environment.

A preliminary site investigation (PSI) was undertaken by GHD in 2016 to identify potential sources of contamination and areas of potential concern and develop a sampling and analytical plan for further intrusive investigations. The findings of the PSI are reported in:

• GHD (2016) Deniliquin PFAS Investigation, Preliminary Site Investigation and Sampling & Analysis Quality Plan. DRAFT August 2016.

This report documents the outcomes of intrusive investigations undertaken as part of the second stage of works. For full details on the site history, reference is made to GHD 2016.

## 1.1 Background

The site is approximately 23 000 m<sup>2</sup> (2.3 hectares) and comprises Lot 48 DP 1189132. The approximate site boundaries are presented in Figure 1, Appendix A.

The site is owned by Deniliquin Council NSW. The site is currently used by FRNSW as a firefighting training facility and is part of Deniliquin airport (Figure 1, Appendix A). The site is bound by Deniliquin airport to the west, south and east, and Macknight Drive, then vacant land to the north. The site was used as a station for the Royal Australian Air Force (RAAF), during the Second World War as part of the Empire Air Training Scheme (No. 7 Service Flying Training School).

GHD understands AFFF and other firefighting foams potentially containing PFAS have historically been used at a number FRNSW locations in NSW for firefighting training purposes. For this reason, PFAS may have been released to the environment, which may have resulted in contamination.

The NSW Environmental Protection Authority (NSW EPA) is currently undertaking an investigation program to assess the historical legacy of PFAS use across NSW. As part of this program they have identified impact in surface water and soil on site and have requested further investigation to understand potential contamination issues be undertaken by FRNSW.

## 1.2 Objective

The overall objective of the investigation is to characterise impacts and subsequently assess the potential risks to human health and the environment from historical firefighting training activities (specifically those involving PFAS) in the FRNSW site.

## 1.3 Scope

The scope of work comprised:

• Preparation of a Health, Safety and Environment Plan (HSEP) and site specific Job Safety and Environmental Analysis (JSEA)

- Service location including a review of site plans (where available), dial before you dig (DBYD) plans, and scanning using ground penetrating radar to identify the presence of underground services
- Drilling and installation of three groundwater monitoring wells (MW01 to MW03) and five soil bores (SB01 to SB05).
- Collection of seven sediment samples (SS01 to SS07) and three surface water samples (SW01 to SW03).
- A groundwater monitoring event (GME) of the three new groundwater wells.
- Laboratory analysis of selected soil, sediment, surface water and groundwater samples for chemicals of potential concern (COPC) including:
  - PFAS, metals including aluminium, silicon and potassium, total organic carbon (TOC), total iron, grain size and cation exchange capacity in soils and sediments.
  - PFAS, major ions and alkalinity, total dissolved solids (TDS) and pH in groundwater and surface water.
- Laboratory analysis of a selection of soil and sediment samples for Australian standard leaching procedure (ASLP) and two soil samples for toxicity characteristics leaching procedure (TCLP)
- A quality control and quality assurance (QA/QC) program
- Surveying of newly installed wells.
- Preparation of this detailed site investigation report

## **1.4 Limitations**

This report is subject to the limitations provided in Section 11.

2. Site description

## 2.1 Site identification

A summary of FRNSW site identification details is provided in Table 2-1. The site location is presented in Figure 1 in Appendix A.

#### Table 2-1 FRNSW site identification summary

| Information           | Details                                                                                                                                              |
|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| Street Address        | The firefighting training site at Deniliquin Airport, Macknight Drive, NSW 2710                                                                      |
| Lot and DP number     | Lot 48 Deposited Plan 1189132                                                                                                                        |
| Site Area             | Approximately 23 000 $m^2$ (2.3 ha) , with a perimeter of approximately 610 m.                                                                       |
| Local Government Area | Deniliquin Council                                                                                                                                   |
| Local Land Use Zoning | IN1 – General Industrial                                                                                                                             |
| Current Land Use      | Training site.                                                                                                                                       |
| Ownership             | Land parcel owned by Deniliquin Council and is leased by FRNSW for use as a training facility. The lease area has been occupied by FRNSW since 1996. |

## 2.2 Surrounding land use and zoning

The land uses surrounding the FRNSW site are summarised below in Table 2-2.

|  | Lonnig         | 5                                                                                                                                                |                                                                               |
|--|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
|  | Orientation    | Description of Surrounding Land<br>Use                                                                                                           | Zoning (Deniliquin LEP 2013)                                                  |
|  | North          | Rural properties including portions<br>of vacant land and some industrial /<br>commercial rural properties (eg.<br>Charlie Carp and a rice-mill) | IN1 – General Industrial                                                      |
|  | East and South | Deniliquin Airport.                                                                                                                              | SP2 – Infrastructure; Air Transport facilities                                |
|  | West           | Deniliquin Airport followed by<br>Deniliquin cemetery and rural<br>properties (including an abattoir<br>and agricultural farm land)              | SP2 – Infrastructure; Air Transport<br>facilities<br>IN1 – General Industrial |

# Table 2-2 Description of land use surrounding FRNSW site and respective zonings

## 2.3 Site environmental setting

### 2.3.1 Topography

The investigation area lies approximately 96 m Australian Height Datum (AHD), according to NSW Land and Property Information. The regional topography appears to be mostly flat, with a slight fall from south-east to north-west.

#### 2.3.2 Soils

#### General

According to eSPADE from Office of Environment & Heritage, the site is within the brown Chromosols landscape. The brown Chromosols landscape is found in sites with average rainfall between 0.35 m and 1.4 m. The soils have moderate agricultural potential, chemical fertility and soil drainage. The upper horizons are described as dark brown with up to 10% orange mottles silty clay loam, grading into a dark brown medium heavy clay.

#### Acid Sulphate Soils

The acid sulphate soil class in the investigation area is Class B4 (ASRIS, 2013) and the works would have a low probability of encountering acid sulphate containing soils. There are no other soil classes located within 500 m of the investigation area.

#### 2.3.3 Hydrology

Surface water flow is expected to follow the local topography on-site and flow generally north and eastwards.

The closest natural water body is Aljoes Creek located 2.5 km east of the site. Aljoes Creek discharges to Edward River located approximately 2.8 km to the east and north of the site.

An irrigation channel, Mulwala Canal, runs approximately 800 m to the east and north of the site. It is the largest irrigation channel in the southern hemisphere. It starts at Lake Mulwala (over 130 km to the south-east of the site) and diverts water from the Murray River across the southern Riverina plain to the Edward River at Deniliquin and beyond. The Mulwala canal supplies water to the southern Riverina towns Berrigan and Finley (both up gradient of the site), Bunnaloo and Wakool (down gradient of the site), as well as agricultural properties.

It is understood that stormwater from the site was originally diverted to an unlined drain that ran approximately eastwards towards Edward River. At some point, stormwater has been diverted to the north of the site to an off-site dam approximately 150 m from the site. Dial before you dig underground utilities information did not provide an indication of stormwater or other service infrastructure through the site.

Stormwater originating from the site is not expected to travel to either the Edward River or Mulwala Channel. Water that does not reach the off-site dam is likely to seep into the ground.

### 2.3.4 Geology

The 1:250,000 scale Deniliquin geological map indicated the site is situated on the Shepparton Formation. The Shepparton Formation is described as unconsolidated to poorly consolidated, mottled, variegated clay, silty clay with lenses of polymictic, coarse to fine sand and gravel; partly modified by pedogenesis, includes intercalated red-brown palaeosols. The regional geology of the area is described in ASRIS (2013) as constituting 35% clay loam, sandy or silty clay loam.

GHD conducted a review of existing geological logs for groundwater bores in the area using the NSW Department of Primary industries, Office of Water, groundwater database in August 2016. The geological logs for bores GW503702 and GW503704 located on the Deniliquin Airport, adjacent to the site suggest that Clays are predominant to depths of approximately 14 m bgl with a sand lense between approximately 9.5 and 13.5 m bgl. The bore log for well GW501823 located approximately 2 km west extends to depths of 234 m bgl and suggests that there is intermingled layers of unconsolidated clays and that there is sands present to depths greater than 140 m bgl. Below these depths, layers of coal are reported to be intersected.

#### 2.3.5 Hydrogeology

The site is located on Quaternary aged, Shepparton Formation, which is expected to form the primary water bearing aquifer unit in this area.

According to the 'Deniliquin' 1:250,000 scale Hydrogeological Map (Geoscience Australia, 1993), the total dissolved solids (TDS) in the groundwater beneath the site is likely to be in the order of 1000 to 1500 mg/L. This would be suitable for stock, domestic and some irrigation purposes. Additionally, bore yields were shown to be 0.5 to 5 L within the sand aquifer, with hydraulic conductivities between 5 to 10 m/day. Fresher water is likely to be located closer to the township of Deniliquin and the Edward River where several production bores are located.

The bore log for GW503702 (NSW Department of Primary industries, Office of Water, groundwater database, 2016) located on the Deniliquin Airport indicates that locally the salinity approximates 4200 mg/L. This is above recommended Australian drinking (NHMRC & NRMMC, 2011) and stock water criteria (ANZECC, 2000), which indicates that shallow groundwater is of limited beneficial use potential in this area.

The NSW Department of Primary industries, Office of Water, groundwater database, 2016 indicates that there are a large number of wells screened within slightly deeper zones of the Shepparton Formation (generally deeper than 30 m bgl) at distances greater than 1.7 km to the east of the site near to the Edward River. The bore records for these wells indicate that their salinities are less than the 1000 mg/L with yields above 1 L/s indicating that the aquifer is potentially of high beneficial use. The large number of wells in and around Edward River used for water supply purposes supports this interpretation. The depth to groundwater is generally ranges between 7 and 12 m bgl in these wells.

Based on the topography and the location of Edward River, groundwater flow is likely to be towards the east and north in the area off the site. However, the Deniliquin Hydrogeological map indicated a generally westerly groundwater flow in the shallow aquifer which might suggest the Edward River is generally a losing river and flow is more dominant towards the Murray River to the west.

The Deniliquin Hydrogeological map also indicates the depth to the water table near the site is in the order of 5 to 10 m. However, this level may have changed since the map was produced in 1993.

#### **Existing Groundwater Bores**

GHD conducted a review of existing groundwater borehole records using the NSW Department of Primary industries, Office of Water, groundwater database in August 2016. The search was conducted to identify registered groundwater boreholes in close proximity and to record information such as use and standing water level. No bores were located on the site but two groundwater monitoring bores were identified within a 500 metre radius of the site and were located on the adjoining Deniliquin Airport to the south of the site (summarised in Error! Reference source not found.).

As noted above, a large number of water supply wells were identified at a distance of greater than 1.7 km to the east of the site near to Edward River which are screened within slightly deeper units of the Shepparton Formation. A number of water supply wells screened in the Shepparton Formation are also located to the west at distances of greater than 2 km. The closest registered beneficial use bores in the possible directions of hydraulic flow have been included in Error! Reference source not found.

## Table 2-3 Review of existing groundwater data

| Borehole ID | Purpose                           | Depth<br>(m) | Screen<br>(m) | Standing<br>Water<br>Level (m) | Approx.<br>Distance<br>from Site | Licence<br>status |
|-------------|-----------------------------------|--------------|---------------|--------------------------------|----------------------------------|-------------------|
| GW503702    | Monitoring<br>Bore                | 14.50        | 12.5-<br>13.5 | No details                     | 400 m south<br>east              | Active            |
| GW503704    | Monitoring<br>Bore                | 11.0         | 9-10          | No details                     | 500 m south<br>east              | Active            |
| GW501823    | Stock,<br>domestic,<br>irrigation | 226.0        | 188 -<br>226  | No details                     | 1820 m west                      | Converted         |
| GW503094    | Domestic,<br>Stock                | 42.50        | 32 –<br>42.5  | 7.0                            | 1700 m east                      | Converted         |

## 2.3.6 Surface water and drainage

## 2.4 Site layout and key site features

A site inspection was undertaken initially by GHD in June 2016. Observations made during the site inspection are presented in GHD (2016). Table 2-4 provides a summary of details including the layout and key features.

#### Table 2-4Key features

| Item                | Summary observations                                                                                                                                                                                               |  |  |  |
|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Fencing and access  | A main cyclone fence encompasses the training facility. The FRNSW site is secure access, for authorised entry only with a locked gate from Macknight Drive.<br>The site boundary is shown on Figure 2, Appendix A. |  |  |  |
| FRNSW site features | Key features of the area occupied by FRNSW include:                                                                                                                                                                |  |  |  |
|                     | • Small site office and garage area adjacent to entry driveway.                                                                                                                                                    |  |  |  |
|                     | • Asphalt area in the centre of the site used as fire training areas (including a partial building structure on the southern corner and hose drying poles, with a fence around the outside of the asphalt).        |  |  |  |
|                     | • A former swimming pool (from when the site was used by the air-force) which has been built up around the sides and covered with a roof. It is now used for confined space training.                              |  |  |  |
|                     | • An above ground storage tank (AST) for LPG is adjacent to the former pool area. A second AST was located on the south-eastern portion of the site.                                                               |  |  |  |
|                     | • Police illicit substance incineration area on the southern portion of the site.                                                                                                                                  |  |  |  |

# 3. Data Quality Objectives

The Data Quality Objectives (DQOs) for the investigation are based on guidance presented in:

 NEPC (2013) National Environmental Protection (Assessment of Site Contamination) Amended Measure (NEPM) No. 1 – Schedule B1, Guideline on Investigation Levels for Soil and Groundwater.

The DQOs establish a framework for contamination investigations which incorporates a seven stepped continuum that defines the problem at the site. A series of stages then optimises the design of the investigation. The seven steps are outlined below:

- Step 1: State the Problem
- Step 2: Identify the Principal Study Question
- Step 3: Inputs to the Decision
- Step 4: Boundaries of the Study
- Step 5: Decision Rules
- Step 6: Tolerable Limits on Decision Errors
- Step 7: Optimisation of the Data Collection Process

An overview of the DQOs for the investigation are presented in the following steps.

## **Step 1: State the problem**

The area has previously been used for the training of firefighters, which has potentially included the use of aqueous film forming foams (AFFF). The AFFF used may have contained PFAS including perfluorooctane sulfanoate (PFOS) and perfluorooctanoic acid (PFOA), which are potentially harmful to human health and the environment.

The problem as it stands is that the use of AFFF containing PFAS may have resulted in contamination of soil, surface water, groundwater and sediments both on the FRNSW site, wider training facility and the surrounding land, and this requires further investigation.

### **Step 2: Identify the decision/goal of the study**

The key study questions to be answered as part of the works include:

- Are contaminants present on the site at concentrations which pose a potentially unacceptable risk to human health or the environment under the current land use (training facility) and adjacent land-uses (including rural land use)?
- Is the data obtained of an acceptable quality to enable appropriate conclusions to be made in relation to the overall risks to human health and/ or the environment?

Should contamination present at the site pose a potentially unacceptable risk to human health for the current land uses or the environment based on concentrations of PFAS in soils, sediments, groundwater or surface waters, the other decisions to be made are:

- Is the extent of the impact adequately delineated?
- Is further assessment or remediation/management required?

## **Step 3: Identify the information inputs**

The following inputs are required for the decision:

• The location of potential PFAS contamination sources

- The concentrations of PFAS in soil, sediment, groundwater and surface water from laboratory analysis.
- Identify potential exposure routes and contamination migration pathways.
- The likelihood of PFAS migrating to groundwater and subsequently off-site.

#### **Step 4: Define the boundaries of the study**

Boundaries of the investigation are summarised in Table 3-1.

#### **Table 3-1 Investigation boundaries**

| Boundary                 | Definition                                                                                                                                                                                                                                       |  |  |  |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Spatial boundaries       | The spatial boundaries for the site are identified as the lateral extent<br>of the investigation area as shown in Figure 3, Appendix A, and<br>down to a depth of approximately 18 m bgl, which is the maximum<br>intrusive investigation depth. |  |  |  |
| Temporal boundaries      | The timeframe for this investigation's scope of work primarily define<br>to the period of works undertaken in the investigation area as part of<br>this assessment; namely June (initial site investigation) to January<br>2017.                 |  |  |  |
| Scale of decision making | The scale of the decision making is limited to the boundaries of the training facility and identified off-site receptors                                                                                                                         |  |  |  |

#### **Step 5: Decision rules**

The degree of impact by contaminants and the decisions associated with accepting data will be assessed with reference to the chosen site investigation levels, which were established within the framework of guidelines made or approved by the NSW EPA.

The criteria used for screening analytical results are discussed in Section 5.

The decision rule was considered to be:

- If concentrations of the COPC in soil, sediment, surface water, or groundwater on or offsite exceed the adopted criteria for permissible land use(s) (as per current zoning), then further assessment, remediation and/or management may be required.
- Conversely, no further action may be required in the event that concentrations are below adopted site criteria.

### **Step 6: Tolerable limits on decision errors**

Data generated during this investigation must be appropriate to allow decisions to be made with confidence.

Specific limits for this investigation have been adopted in accordance with the appropriate guidance from the AS4482.1, which includes appropriate indicators of data quality (data quality indicators [DQIs] used to assess QA/QC, and GHD's Standard Field Operating Procedures). The pre-determined DQIs established for the investigation are discussed in Appendix F.

If any of the DQIs are not met, further investigation will be necessary to determine whether the non-conformance will significantly affect the usefulness of the data.

### Step 7: Optimisation of the data collection process

This step involves identifying the most resource effective sampling and analysis design which is required to satisfy the DQOs. The sampling and analysis plan, which was developed to meet this objective, is summarised in Section 4.

## 4. Methodology

## 4.1 General

The scope of work is summarised in Section 1.3. The tables in Section 4.2 to 4.5, summarise the groundwater well installation and soil sampling, sediment sampling, groundwater sampling and surface water sampling methodologies.

## 4.2 Groundwater well installation and soil sampling

# Table 4-1 Groundwater well installation methodology (including soil and soil bore sampling)

| ltem                          | Description                                                                                                                                                                                                                                                            |  |  |  |
|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Date of fieldwork             | 29 November to 1 December 2016. Redrill 15 and 16 December 2016                                                                                                                                                                                                        |  |  |  |
| Work clearance                | JSEA including daily pre-work assessment and hazard identification                                                                                                                                                                                                     |  |  |  |
| Technical<br>guideline        | National Uniform Drillers Licensing Committee (2011) Minimum<br>Construction Requirements for Water Bores in Australia (Edition 3, 2012)                                                                                                                               |  |  |  |
| Ground clearance              | Scanning using electromagnetic locating prior to mechanical drilling.                                                                                                                                                                                                  |  |  |  |
| Drilling technique            | Following hand auguring clearance to 1 m bgl, solid flight augers were employed until termination.                                                                                                                                                                     |  |  |  |
| Bore logging                  | All field observations and subsurface conditions were recorded on lithological logs (Appendix D).                                                                                                                                                                      |  |  |  |
| Field screening               | Field screening for volatiles was undertaken prior to collection of soil samples for laboratory analysis using a PID, the results of which are included in Appendix D.                                                                                                 |  |  |  |
| <b>•</b> "                    | PID calibration data is presented in Appendix C.                                                                                                                                                                                                                       |  |  |  |
| Soil sampling                 | Discrete soil samples were collected from the surface and from each<br>lithological zone. Samples for VOC screening were collected in separate<br>snap lock bags. Additionally, soil was sampled into laboratory supplied<br>jars.                                     |  |  |  |
| Sample Analysis               | Two soil samples from each borehole was submitted for laboratory analysis of COPC including PFAS, organic carbon (TOC), total iron, potassium, aluminium, silicon, grain size and cation exchange capacity (CEC).                                                      |  |  |  |
| Sample handling and transport | Following collection, soil samples were immediately placed on ice and<br>stored in a cool, dark environment (esky) prior to being forwarded to the<br>analytical laboratory within the specified holding times along with a chain<br>of custody (COC) form Appendix E. |  |  |  |
| QA/QC                         | A QA/QC sampling procedure was implemented and further details are described in Section 3 and Appendix F.                                                                                                                                                              |  |  |  |
|                               | QA/QC sampling included two intra-laboratory duplicate samples and two inter laboratory duplicate samples.                                                                                                                                                             |  |  |  |

<sup>&</sup>lt;sup>1</sup> MW02 and MW03 experienced well collapse and piezometer damage during the initial drilling works. They were therefore re-drilled, and the initial wells decommissioned, prior to the groundwater monitoring event.

| Item              | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Well construction | <ul> <li>Wells were installed with the following general characteristics:</li> <li>50 mm polyvinyl chloride (PVC) Class 18 blank and screened casings</li> <li>Primary filter pack material comprising a chemically inert material which was well rounded, with a high coefficient of uniformity and extended at least 0.5 m above the screened PVC casing</li> <li>Bentonite pellets used as annular sealant which extended at least 0.5 m above the filter pack, followed by a cement slurry to the ground surface</li> <li>Monitoring wells were finished with trafficable gatic covers and concrete</li> </ul> |  |  |
| Development       | <ul> <li>Well development occurred following installation using bailers until:</li> <li>No further noticeable sand or silt was recovered</li> <li>The water was relatively clear when removed from the well</li> <li>All water was removed from the well</li> </ul>                                                                                                                                                                                                                                                                                                                                                |  |  |
| Surveying         | Following well installation, all newly installed were surveyed by a registered surveyor.<br>The survey report for the wells is provided in Appendix G.                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| Waste disposal    | Soil cuttings and purged groundwater is currently stored in four 205 L drums on the FRNSW site for disposal of to a licenced waste facility. Waste disposal documentation will be provided during the stage 2 works.                                                                                                                                                                                                                                                                                                                                                                                               |  |  |

## 4.3 Sediment sampling

## Table 4-2 Sediment sampling methodology

| Item                                                   | Description                                                                                                                                                                                                                                                    |  |  |  |
|--------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Date of fieldwork                                      | 29 November 2016                                                                                                                                                                                                                                               |  |  |  |
| Work clearance                                         | JSEA including daily pre-work assessment and hazard identification                                                                                                                                                                                             |  |  |  |
| Technical<br>guideline                                 | GHD's Standard Field Operating Procedures                                                                                                                                                                                                                      |  |  |  |
| Sampling                                               | Samples were collected by hand using a trowel and were placed directly into laboratory supplied sample jars.                                                                                                                                                   |  |  |  |
| Sample handling and transport                          | Following collection, sediment samples were immediately placed on ice and stored in a cool, dark environment (esky) prior to being forwarded to the analytical laboratory within the specified holding times along with a COC form (Appendix E).               |  |  |  |
| Decontamination                                        | Prior to and following the collection of each sediment sample, all non-<br>disposable sampling equipment underwent decontamination including:<br>Washing of equipment with phosphate-free detergent (Decon Neutracon)<br>Rinsing of equipment with fresh water |  |  |  |
| Sample analysis                                        | All sediment samples were submitted for laboratory analysis of COPC including PFAS, organic carbon (TOC), total iron, potassium, aluminium, silicon, grain size and cation exchange capacity (CEC).                                                            |  |  |  |
| Quality<br>assurance and<br>quality control<br>(QA/QC) | No QA/QC sampling was undertaken on the sediment for this site.<br>Sediment sampling was considered part of the soil sampling program,<br>therefore the QA/QC samples listed in Table 4-1 satisfy QA/QC<br>requirements for sediment sampling.                 |  |  |  |

## 4.4 Groundwater sampling

## Table 4-3 Groundwater sampling methodology

| Item                                                   | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
|--------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Date of fieldwork                                      | 24 January 2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
| Work clearance                                         | JSEA including daily pre-work assessment and hazard identification                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
| Technical<br>guideline                                 | ASTM D6771–02, Standard practice for low-flow purging and sampling for<br>wells and devices used for groundwater quality investigations, ASTM<br>International<br>Australian Standard 5667:1998 Water Quality – Sampling, Part 1: Guidance<br>on the design of sampling programs, sampling techniques and the<br>preservation and handling of samples (AS 5667.1:1998)<br>Australian Standard 5667:1998 Water Quality – Sampling, Part 11:<br>Guidance on the Sampling of Groundwaters (AS 566.11:1998) |  |  |  |
| Gauging                                                | Three on-site monitoring wells (MW01, MW02 and MW03) were gauged<br>using an oil/water interface probe to measure standing water levels (SWL)<br>and assess for the potential presence of light non-aqueous phase liquid<br>(LNAPL). LNAPL was not encountered, therefore no LNAPL sampling was<br>required.                                                                                                                                                                                            |  |  |  |
| Field chemistry                                        | Field measurements were taken using a calibrated water quality meter and<br>flow through cell, with measurements of temperature, pH, electrical<br>conductivity (EC), dissolved oxygen (DO) and oxidation-reduction potential<br>(REDOX) recorded.<br>Field sampling sheets are presented in Appendix C.                                                                                                                                                                                                |  |  |  |
| Sampling                                               | All monitoring wells were low flow sampled using a micropurge pump.                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
| Sample handling and transport                          | Following collection, samples were placed in the sample bottles. The groundwater samples were then immediately placed on ice and stored in a cool, dark environment (esky) prior to being forwarded to the analytical laboratory within the specified holding times along with a COC form (Appendix E).                                                                                                                                                                                                 |  |  |  |
| Decontamination                                        | Prior to and following the collection of each groundwater sample, all non-<br>disposable sampling equipment underwent decontamination including:<br>Washing of equipment with phosphate-free detergent (Decon Neutracon)<br>Rinsing of equipment with fresh water                                                                                                                                                                                                                                       |  |  |  |
| Sample analysis                                        | All groundwater samples were submitted for laboratory analysis of COPC including PFAS, major ions and alkalinity, total dissolved solids (TDS) and pH.<br>Laboratory results are summarised in Appendix B and certificates of analysis and COC included in Appendix E.                                                                                                                                                                                                                                  |  |  |  |
| Quality<br>assurance and<br>quality control<br>(QA/QC) | QA/QC sampling included the collection of one inter-laboratory duplicate sample.                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| Waste disposal                                         | Purged groundwater was transferred into jerry cans which are currently<br>stored on the FRNSW site for disposal of to a licenced waste facility. Waste<br>disposal documentation will be provided during the stage 2 works.                                                                                                                                                                                                                                                                             |  |  |  |

## 4.5 Surface water sampling

## Table 4-4 Surface water sampling methodology

| Item                                                   | Description                                                                                                                                                                                                                                                                                                                                   |
|--------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Date of fieldwork                                      | 29 November 2016                                                                                                                                                                                                                                                                                                                              |
| Work clearance                                         | JSEA including daily pre-work assessment and hazard identification                                                                                                                                                                                                                                                                            |
| Technical<br>guideline                                 | GHD's Standard Field Operating Procedures                                                                                                                                                                                                                                                                                                     |
| Sampling                                               | Surface water samples were collected from locations close to the water's edge using a hand held water sampler fitted with a laboratory provided plastic unpreserved container that was changed between locations. Field sampling sheets are presented in Appendix C.                                                                          |
| Sample handling and transport                          | The surface water samples were then transferred into laboratory provided<br>bottles. The sample bottles were transferred to an ice filled cool box for<br>sample preservation prior to and during shipment to the sampling<br>laboratory. A chain of custody form was completed, and forwarded with the<br>samples to the testing laboratory. |
| Decontamination                                        | Dedicated sample bottles will be used to collect surface water samples,<br>eliminating the need for decontamination of equipment and rinsate<br>samples.                                                                                                                                                                                      |
| Sample analysis                                        | All surface water samples were submitted for laboratory analysis of COPC including PFAS, major ions and alkalinity, total dissolved solids (TDS) and pH.                                                                                                                                                                                      |
|                                                        | Laboratory results are summarised in Appendix B and certificates of<br>analysis and COC included in Appendix E.                                                                                                                                                                                                                               |
| Quality<br>assurance and<br>quality control<br>(QA/QC) | QA/QC sampling included the collection of one intra-laboratory duplicate sample and one inter-laboratory duplicate.                                                                                                                                                                                                                           |

## 5.1 Basis for assessment

The following guidelines were adopted for the assessment of contamination.

- NSW EPA (1995) Contaminated Sites: Sampling Design Guidelines
- NSW DEC (2006) Contaminated Sites: Guidelines for NSW Site Auditor Scheme
- NSW DECC (2015) Guidelines on the Duty to Report Contamination under the Contaminated Land Management Act 1997
- NSW EPA (2011) Contaminated Sites: Guidelines for Consultants Reporting on Contaminated Sites
- NEPM (2013) National Environment Protection (Assessment of Site Contamination) Amendment Measure (No. 1), National Environment Protection Council (NEPC)

Screening criteria for the assessment of PFAS impacted sites are still in the process of development in Australia. Only a few values have been published by Australian regulatory agencies, some of which are interim, draft or are "to be reviewed". GHD is involved with the development of National guidelines for the assessment and management of PFAS contamination which has included drafting of the guidelines for a working group organised by CRC CARE and involving State and Commonwealth regulatory agencies and organisations.

In addition to works undertaken by GHD, published guideline documents currently available and considered as part of this review include:

- Department of Environment Regulation (DER), January 2017. Interim Guideline on the Assessment and Management of Perfluoroalkyl and Polyfluoroalkyl Substances (PFAS), Contaminated Sites Guidelines, Government of Western Australia (WA).
- Department of Environment and Energy (DEE), October 2016. DRAFT Commonwealth Environmental Management Guidance on Perfluorooctane Sulfonic Acid (PFOS) and Perfluorooctanoic Acid (PFAS)
- EnHealth, June 2016. Interim national guidance on human health reference values for per- and poly-fluoroalkyl substances for use in site investigations in Australia.
- Environmental Risk Sciences Pty Ltd, February 2016. *Proposed Decision Tree for Prioritising Sites Potentially Contaminated with PFAS, New South Wales Environment Protection Authority* (NSW EPA)

For the purpose of the assessment of data collected from the investigations, a number of guidelines and information sources have been reviewed in order to identify the most appropriate and current site assessment criteria at the time of preparation of this report. GHD notes that these criteria differ slightly to those initially outlined in the SAQP presented in GHD (2016) as new documentation has come to light since the preparation of the PSI (GHD, 2016). The screening criteria documented herein supersede any criteria previously specified in the PSI (GHD 2016).

It is noted that the assessment of PFAS impacted sites is a rapidly developing field and consequently site assessment criteria are continually under review and may be revised as new scientific information comes to light.

## 5.2 Rationale for assessment criteria

The assessment criteria were selected to allow decisions to be made for the following identified receptors (from Section 2.1):

- On-site (FRNSW) site commercial workers.
- Potential intrusive maintenance workers on and off-site.
- Off-site hydraulically down-gradient agricultural and commercial receptors surrounding the site.
- Beneficial uses of groundwater, including domestic, stock, irrigation and recreational use groundwater resources.
- Terrestrial and ecological receptors on and off-site in land based ecosystems and surface water bodies (including those recharged by groundwater).

Given the rural nature of the area and proximity to the town of Deniliquin, it is possible that there are some residential properties amongst the commercial/industrial properties surrounding the site. Residential receptors have therefore also been considered as a conservative measure.

#### 5.3 Nominated PFAS assessment criteria

#### 5.3.1 Surface water and groundwater

To assess the potential contamination risk to the adjacent ecosystem, the WA DER (2017) interim screening levels are adopted for the surface water and groundwater assessment. The nominated screening levels are outlined in Table 5-1.

| Exposure<br>Scenario       | PFOS /<br>PFHxS                             | PFOA     | Basis for nomination of criteria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|----------------------------|---------------------------------------------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Drinking<br>water quality  | 0.5 μg/L                                    | 5 μg/L   | Criteria adopted from DER (2017) which are based on<br>the enHealth (2016) recommendations. Drinking water<br>is not extracted on the FRNSW site, however one<br>registered groundwater bore was located within a 500<br>metre radius of the FRNSW site, registered for stock<br>use. Considering that there is no specific stock use<br>criterion available, and that there is potential for the<br>groundwater to be used for domestic potable use,<br>drinking water criteria are considered appropriate for<br>the purpose of this initial screening. |
| Ecological -<br>freshwater | 0.00023<br>µg/L                             | 19 µg/L  | Criteria adopted from DER (2017) freshwater criteria<br>for high conservation value systems (99% species<br>protection). Whilst the receiving ecosystem from the<br>FRNSW site is not considered high conservation<br>value, the draft guidelines recommend that the 99%<br>level of protection is used for slightly to moderately<br>disturbed systems as PFAS and PFOA have been<br>shown to bio accumulate in wildlife.                                                                                                                                |
| Recreational<br>water      | 50 µg/L<br>(sum of<br>PFOS<br>and<br>PFHxS) | 500 μg/L | Criteria adopted from DER (2017) which are based on<br>the enHealth (2016) recommendations. Dilution factor<br>of 10 applied                                                                                                                                                                                                                                                                                                                                                                                                                              |

#### Table 5-1 Nominated screening criteria for surface water and groundwater

#### 5.3.2 Soil and sediment

Most of the currently available PFAS guidelines are based on direct contact with contaminated soils, however, as PFAS is highly soluble in water, and can be washed through soil into underlying groundwater or discharged into river systems, the leaching potential of the PFAS in soil should be the focus on an initial assessment (NSW EPA, 2016).

To assess the potential contamination risk to human health, the WA DER (2017) interim screening levels are adopted for the soil assessment. There are no published guidelines available for the assessment of ecological risk, therefore the Department of the Environment and Energy (DEE) draft 'Commonwealth Environmental Management Guidance on Perfluorooctane sulfonic acid (PFOS) and Perfluorooctanoic acid (PFOA)' were considered. These DEE draft guidelines have been considered as a comparative screening tool only, not as an action level or similar. The guideline screening values from Table 1 (developed for CRC Care through the application of Australia's ASC NEPM methodology) were used, considering that a separate water assessment has been included in the scope of works for these investigations.

In accordance with the technical guidance note prepared by EnRisk (2016), the Australian Standard Leachate Procedure (ASLP) criteria for soil/sediment leachate assessment adopted for the purpose pf this assessment is the surface water/groundwater criteria multiplied by a dilution factor of 10. A dilution factor of 20 is recommended by the USEPA as the minimum dilution that is likely to occur as a chemical move from soil into underlying groundwater, therefore using a dilution factor of 10 provides some additional conservatism (NSW EPA, 2016). Considering a factor of 10 is already applied to recreational groundwater criteria, a further dilution factor is not applied for the leachate recreational criteria.

The nominated screening criteria for the assessment of leachable concentrations of PFOS and PFOA from soils are presented in Table 5-2.

| Exposure<br>Scenario       | PFOS /<br>PFHxS | PFOA     | Basis for nomination of criteria                                                                                                                       |
|----------------------------|-----------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| Drinking<br>water quality  | 5 µg/L          | 50 µg/L  | Criteria adopted from DER (2017) which are based on<br>the enHealth (2016) recommendations. Dilution factor<br>of 10 applied                           |
| Ecological -<br>freshwater | 0.0023<br>μg/L  | 190 µg/L | Criteria adopted from DER (2017) freshwater criteria<br>for high conservation value systems (99% species<br>protection). Dilution factor of 10 applied |

### Table 5-2 Nominated screening criteria for soil - leachate

Health and ecological based screening levels to be applied to the assessment of soil and sediment data are summarised in Table 5-3.

#### Table 5-3 Nominated screening criteria for soil and sediment

| Exposure Scenario | PFOS /<br>PFHxS                             | PFOA     | Basis for nomination of criteria                                                                                                                                        |
|-------------------|---------------------------------------------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Health Based      |                                             |          |                                                                                                                                                                         |
| Residential       | 4 mg/kg<br>(sum of<br>PFOS<br>and<br>PFHxS) | 40 mg/kg | Criteria adopted from DER (2017). Guideline values are based on interim tolerable daily intake value of 0.15 $\mu$ g/kg/d for PFOS/PFHxS and 1.5 $\mu$ g/kg/d for PFOA. |

| Exposure Scenario                                      | PFOS /<br>PFHxS                                  | PFOA          | Basis for nomination of criteria                                                                                                                                        |
|--------------------------------------------------------|--------------------------------------------------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Commercial /<br>industrial                             | 100<br>mg/kg<br>(sum of<br>PFOS<br>and<br>PFHxS) | 1000<br>mg/kg | Criteria adopted from DER (2017). Guideline values are based on interim tolerable daily intake value of 0.15 $\mu$ g/kg/d for PFOS/PFHxS and 1.5 $\mu$ g/kg/d for PFOA. |
| Ecological                                             |                                                  |               |                                                                                                                                                                         |
| National parks/areas<br>with high ecological<br>values | 6.6<br>mg/kg<br>(PFOS<br>only)                   | 1 mg/kg       | Published guideline values unavailable at the time of preparation of this report.<br>Unpublished value derived DEE – used as a comparative tool only.                   |

1. Residential exposure has been use for conservative values for the agricultural grazing / cropping land use.

## 5.4 Assessment criteria –other COPCs

#### 5.4.1 Soil and Sediment

The assessment of risk to human health, was undertaken in accordance with NEPC 2013. The following criteria have been adopted:

- NEPC (2013) Health investigation level (HIL)-D and health screening level (HSL) D; for on-site and off-site commercial/industrial land uses
- NEPC (2013) HIL-A and HSL A; for off-site agricultural land uses
- NEPC (2013) Ecological investigation level (EIL) D and ecological screening level (ESL) D; for on and off-site commercial/industrial land uses
- NEPC (2013) EIL and ESL Urban Residential/Public open space for off-site rural residential land uses
- CRC Care (2011) Direct contact HSLs (commercial/industrial); for on and off-site commercial/industrial land uses
- CRC Care (2011) Intrusive maintenance worker direct contact and HSLs; for on and offsite intrusive maintenance workers

The adopted soil criteria are presented in Table A1 and Table A2 in Appendix B. If the nominated assessment guidelines do not provide screening values for the analytes shown in the summary tables, the guideline was removed from the summary table.

All sediment samples collected in this investigation were considered to be classified as 'soil'. Specific sediment based guidelines (ANZECC 2000, Interim-sediment quality guidelines, high and low) were reviewed and compared to the adopted soil assessment criteria, which were found to be more conservative and no change to the investigation results were identified. Therefore considering this and the physical nature of the samples, no sediment specific assessment criteria were adopted for the assessment of these samples.

### 5.4.2 Groundwater and surface water

In accordance with NSW EPA (2007) *Guidelines for the Assessment and Management of Groundwater Contamination*, contaminants identified in groundwater will be screened against existing generic groundwater investigation levels (GILs) which protect the following environmental values:

- Drinking water
- Aquatic ecosystems

The groundwater investigation levels (GILs) presented in NEPC 2013 are based on ANZECC 2000 and ADWG 2015. These criteria are considered to be protective of the environmental and drinking water values referenced by NSW EPA (2007). On the basis that groundwater could discharge to a fresh water system (Ultimately at Edward River located over 3 km north east of the site), NEPM GILs for fresh waters have been adopted.

The National Health Medical Research Council (NHMRC) recreational guidelines have also been adopted to account for potential use of groundwater for recreation use off-site, though this is considered unlikely.

## 6. Results

## 6.1 General

This section presents the results of all soil, groundwater, sediment and surface water investigations undertaken on the site by GHD in December 2016.

Analytical results and groundwater/surface water field parameters are summarised in the following tables in Appendix B:

- Table A: Soil and sediment analytical results Human health and ecological
- Table B: ASLP analytical results
- Table C: Groundwater and surface water analytical results including field parameters

## 6.2 Quality assurance and quality control

An evaluation of the field and laboratory data quality was undertaken in accordance with the NEPM – Schedule B2, Assessment of data quality.

The relative percentage difference (RPD) between primary and duplicate samples was calculated, and found to exceed the nominated assessment criteria in two soil pairs and one surface water pair. The data for these pairs was therefore assessed with caution, with both the primary and duplicate sample results considered in the data evaluation process for this site.

Other than the RPD exceedances, the review of the QA/QC program indicates that the soil, groundwater, surface water and sediment analytical data are of an acceptable quality upon which to draw meaningful conclusions regarding impacts to groundwater and soil.

## 6.3 Soil results

Soil was examined by GHD during drilling works at newly installed groundwater wells (MW01 to MW03) and soil bores (SB01 to SB05). Descriptions of the lithology including visual and olfactory observations, sample identifications along with the well construction details and elevations are presented in borehole logs contained in Appendix D.

#### 6.3.1 Soil profile

The observed lithology at across the eight investigation locations completed during this scope of works is summarised in Table 6-1.

| Depth range (m)       | Lithology                          |
|-----------------------|------------------------------------|
| 0.0 – 1.6             | Clayey SAND, red brown (fill)      |
| 0.3 to 8.0            | CLAY dark brown (natural)          |
| 6.2 to 10.5           | Silty CLAY, yellow brown (natural) |
| 9.3 to Not determined | Sand, yellow brown (natural)       |

#### Table 6-1 Generalised lithology encountered

### 6.3.2 Soil analytical results

The soil sampling laboratory results are summarised in Table A, Appendix B and presented in Figure 4 in Appendix A. Laboratory certificates of analysis are presented in Appendix E.

All soil results were below the nominated screening criteria for all COPC for human health under a commercial / industrial land use scenario.

The highest concentration of PFAS was reported in soil sample collected from SB02 on the asphalt in the fire training area (15.7 mg/kg – WA DER sum of total). However, the concentration of PFAS reported approximately 0.9 m below this point, was at least an order of magnitude lower for all PFAS analytes (WA DER (sum of total) was 0.652 mg/kg in SB02\_1.0).

The concentration of PFAS was noted to be greater in shallow soil samples compared to the deeper soil samples at each location. With the exception of SB02, concentrations of PFAS in soil samples were generally low, with the concentration of the majority of PFAS analytes below the laboratory limit of reporting (LOR) at each location. However PFAS was detected at all soil investigation locations (SB05 noted to have very low concentrations).

## 6.4 Sediment results

Sediment samples were collected at locations SS01 to SS07. SS08 was proposed further north of sample SS07; however, this location could not be accessed due to long grass and poor visibility. The sediment laboratory results presented in Figure 4 in Appendix A and Table A, Appendix B. Laboratory certificates of analysis are presented in Appendix E. Given the location and profile of the samples collected, the application of soil screening criteria for initial analysis of the data set is considered appropriate for this investigation.

There were no exceedances of the adopted assessment criteria, however all locations reported detectable concentrations of PFAS. Concentrations of PFAS in sediments were low and generally below or close to the laboratory limit of reporting. All PFAS concentrations in sediment samples collected were several orders of magnitude below the nominated investigation levels

The maximum concentrations reported for PFOS and PFOA in sediments were 0.297 mg/kg (SS01) and 0.0032 mg/kg (SS05) respectively. The concentration of PFAS (sum of total) was noted to be an order of magnitude greater in samples collected from on-site monitoring locations compared to off-site. The concentration of PFAS (sum of total) was the lowest at SS03.

## 6.5 **ASLP** analytical results

Ten soil samples and seven sediment samples were submitted for ASLP testing for PFAS, the results of which were compared to the surface water/groundwater criteria multiplied by a dilution factor of 10 (Table 5-2) for the purpose of preliminary data screening. The samples analysed for ASLP included:

- MW01\_0.1, MW01\_9.0, MW02\_0.1, MW03\_0.1
- SB01\_0.1, SB02\_0.1, SB03\_0.1, SB03\_1.0, SB04\_0.15, SB05\_0.1
- SS01, SS02, SS03, SS04, SS05, SS06, SS07

Two additional samples were analysed for TCLP for the purpose of waste classification (MW01\_0.1 and MW01\_9.0).

The leachate laboratory results are presented on Figure 5 in Appendix A, and summarised on Table B, Appendix B.

The concentration of PFHxS and PFOS (sum of total) was noted to be at least one order of magnitude greater in the leachate samples than in the original soil/sediment samples. A review of this data against the relevant screening criteria is provided in Sections 6.5.1 and 6.5.2.

#### 6.5.1 Soils

The concentration of PFHxS and PFOS (sum of total) in all ten leachate samples (ASLP) exceeded the nominated leachability screening criteria adopted from WA DER (2017) ecological guidelines for fresh water. Leachate from six samples also exceeded the adopted criteria for the protection of drinking water. The concentration of PFHxS (sum of total) in MW01\_0.1, SB02\_0.1 and SB04\_0.15 leachate samples also exceeded the adopted criteria for protection of recreational water.

The maximum concentration of PFHxS and PFOS (sum of total) in leachate was at SB02\_0.1 (756 ug/L).

### 6.5.2 Sediment

The concentration of PFHxS and PFOS (sum of total) in all seven sediment leachate samples exceeded the nominated leachability screening criteria adopted from WA DER (2017) ecological guidelines for fresh water. The concentration of PFHxS and PFOS (sum of total) at SS01 and SS02 also exceeded the adopted drinking water guidelines. There were no exceedances of the recreational guidelines.

## 6.6 Groundwater and surface water results

#### 6.6.1 Groundwater gauging results

Gauging results are summarised in Table 6-2. The top of casing (TOC) elevation was determined by a professional surveyor and was used to calculate the groundwater elevation in metres Australian Height Datum (AHD).

| Well<br>ID | Depth of well<br>(m) | Depth to<br>groundwater<br>(m bTOC) | TOC<br>(m<br>AHD) | Corrected groundwater<br>elevation<br>(m AHD) |
|------------|----------------------|-------------------------------------|-------------------|-----------------------------------------------|
| MW01       | 14.06                | 11.278                              | 93.688            | 82.410                                        |
| MW02       | 12.74                | 11.123                              | 92.682            | 81.599                                        |
| MW03       | 17.34                | 12.157                              | 92.810            | 80.663                                        |

#### **Table 6-2 Groundwater Gauging Data**

Note: TOC = top of casing

A groundwater contour map showing the interpolated groundwater contours and the inferred groundwater flow direction is presented on Figure 7 in Appendix A. Groundwater contours were calculated based on groundwater elevations using an inbuilt ArcGIS interpolation tool to derive the contours with a kriging method.

The local groundwater flow was inferred to be in a northerly direction, however GHD notes that this is based on small number of data points.

### 6.6.2 Groundwater quality

Prior to groundwater sample collection, field parameters and observations were recorded during the purging of the well. Field parameters are summarised in Table 6-3 and Table C, Appendix B.

| Parameter  | Results and Comments                                                  |
|------------|-----------------------------------------------------------------------|
| рН         | pH range was 7.22 (MW02) and 7.73 (MW03)                              |
| Temp (°C)  | Temperature was between 21.1°C (MW01) and 21.5°C (MW03)               |
| EC (µS/cm) | EC ranged between 1,757 $\mu$ S/cm (MW02) and 2,599 $\mu$ S/cm (MW03) |
| DO (mg/L)  | DO ranged between 1.98 mg/L (MW03) and 5.72 mg/L (MW01)               |
| ORP* (mV)  | Field redox ranged between 130 mV (MW03) and 177 mV (MW01)            |

#### Table 6-3 Summary of groundwater quality field parameters

\* Oxidation Reduction Potential - field values adjusted by +205

No odours or sheen were noted. The purged groundwater was brown to yellow tinge and slightly turbid.

## 6.6.3 Analytical results

Samples were collected from three groundwater wells located on the FRNSW site; MW01, MW02 and MW03. Additionally, surface water samples were collected from off-site locations along drainage lines from the site (figure 3, Appendix A). The groundwater and surface water laboratory results are summarised in Table C, Appendix B. Laboratory certificates of analysis are presented in Appendix E.

Groundwater and surface water COPC reported in excess of the nominated screening criteria are summarised in Table 6-4, and are shown on Figure 6 in Appendix A. Further discussion pertaining to these exceedances is provided in Section 7.

| Analyte                             | Guideline<br>Exceedance                           | Monitoring locations                                                                                                                                                                    |  |
|-------------------------------------|---------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| PFHxS and<br>PFOS (sum<br>of total) | WA DER (2017)<br>freshwater<br>(ecological)       | MW01, FD01 (field duplicate for MW01). MW02 and<br>MW03 also exceeded, however concentration less than<br>the LOR.<br>SW01, SW02, SW03 (primary and duplicate samples<br>FS01 and FD01) |  |
|                                     | WA DER (2017)<br>Drinking water<br>(human health) | MW01, FD01 (field duplicate for MW01).<br>SW01, SW03 (primary and duplicate samples FS01 and FD01)                                                                                      |  |
|                                     | WA DER (2017)<br>recreational (human<br>health)   | SW03 (duplicate sample FS01)                                                                                                                                                            |  |
| PFOA                                | none                                              |                                                                                                                                                                                         |  |

#### Table 6-4 Summary groundwater and surface water exceedances

## 7. Discussion

A range of analytes were assessed as part of this investigation in response to EPA requests and guidance. These were compared against the nominated assessment criteria based on the identified potential receptors. However, as outlined in section 1.2, the objective of this report is to assess the potential risks to human health and the environment from potential PFAS contamination related to historic firefighting activities.

## 7.1 Soil and sediment

#### PFAS in soils and sediments - on-site

The concentration of PFHxS and PFOS (sum of total) at SB02 exceeded the WA DER (2017) guidelines for residential health (12.8 mg/kg). Considering this is an on-site investigation location and that there are no residential receptors on site, this exceedance is not considered to represent an unacceptable risk. The concentration of PFOS at SB02\_0.1 m bgl also exceeded the adapted ecological screening criteria. Similarly, the site is considered a commercial/industrial land use, therefore this exceedance is unlikely to represent an unacceptable risk to ecological receptors. However, due to the rural nature of the site, it is acknowledged that ecological receptors may be transiently present at the site.

The highest concentrations of PFAS were noted to be in shallow soil samples from the firefighting training area and former AFFF use area (Figure 2, Appendix A). This suggests that the areas of firefighting training that are known to have used AFFF containing PFAS remain impacted and are likely to be acting as primary on-going source zones.

The concentration of PFAS declined substantially with depth at most of these locations (SB01, SB02, SB03, SB04 and MW01). This decrease was less pronounced at SB03, where the concentration of PFAS in the deeper soil sample was similar to the shallow soil sample. This could be because this monitoring location does not have a sealed, asphalt surface but is still in close proximity to the firefighting training area.

PFAS was detected in sediment samples collected from drainage lines near the firefighting training area (SS01 and SS02). These samples indicate that impacted soils and sediments are somewhat mobile on-site. However, the concentration of PFAS was an order of magnitude lower at the off-site monitoring connected to these drainage lines (SS03) close to the site boundary (see below for further discussion).

Minor concentrations of PFAS were detected in shallow soil samples collected on the northern portion of the site at MW02, MW03 and SB05. This may be from wind dispersed AFFF or minor historical training activities occurring in this portion of the site. These are not considered to pose a substantial ongoing source of PFAS to the local groundwater.

#### PFAS in sediments - off site

The concentration of PFAS in off-site sediment samples was an order of magnitude lower than sediment samples from with-in the FRNSW site, suggesting that there is some reduction of PFAS impacted sediments within the drainage lines. The concentration of PFAS in sediments along the northern drainage line leading towards the off-site dam (SS05, SS06, and SS07) was noted to decrease with increasing distance from the site, further supporting that there is some attenuation of sediments in this area.

The concentration of PFAS analytes was noted to generally be the lowest at SS03. This monitoring location is midway along a straight drainage line (south side of Macknight Drive) and is therefore likely to receive a relatively high flow rate, preventing sediment deposition. The

highest off-site PFAS concentration was at SS05, which is located in the bend of the current drainage line (north site of Macknight Drive). This bend is likely to be acting as a sediment trap due to the reduced water flow rates.

PFAS was detected at SS04 on the former drainage line in similar concentrations to those recorded in the current drainage line to the north. This indicates that PFAS is likely to remain present along the former drainage route.

#### PFAS leachability from soils and sediments

The most important process by which PFAS present in soil may pose a risk to people or the environment is contamination of surface and groundwater's from leaching from the soil (NSW EnRiskS, 2016).

Leachate testing completed on a number of these samples shows that there is potential for the release of PFAS to groundwater and surface water environments and the presence of PFAS in soils and, to some extent, sediments represents a likely on-going source to the environment.

All soil and sediment samples analysed for leachate potential (ASLP) exceeded the nominated leachability screening criteria adapted from WA DER (2017) ecological freshwater guidelines suggesting that the impacted soils/sediments both on and off site may continue to pose a risk to ecological aquatic receptors. The concentration of PFHxS and PFOS (sum of total) from shallow samples at SB01, SB02, SB03, SB04 and MW01 (all located within the training area) were noted to exceed the leachability screening criteria adapted from the WA DER (2017) Drinking water guidelines, as did sediment samples SS01 and SS02 which are connected to the training area. This suggests that the soils from the former training area are likely to be acting as the primary on-going source of PFAS contamination to the groundwater and local surface waters via sediment transport.

## 7.2 Groundwater and surface water

Groundwater contours indicate that the groundwater is flowing generally to the north. This aligns with the expected groundwater flow from the regional topography, geology and hydrogeology (Section 2.3), which indicated a north to north-east flow.

PFAS has been detected in the groundwater on the FRNSW site, and off-site in surface waters at concentrations greater than the adopted assessment criteria for the protection of drinking water, ecological, and recreational receptors.

#### PFAS in groundwater

The concentration of PFHxS and PFOS (sum of total) in groundwater at MW01 exceeded the WA DER (2017) freshwater ecological guidelines and drinking water guidelines. The concentration at MW02 and MW03 also exceeded the adopted ecological guidelines; however the concentration was less than the laboratory LOR. MW01 is located in the firefighting training area, and soil samples from this monitoring location were found to contain elevated levels of leachable PFAS. This was also the case for soil samples from surrounding monitoring locations. The PFAS impact detected in groundwater at MW01 is therefore likely to be from historic direct infiltration of AFFF during training activities and/or leachate from the impacted soils.

The lack of detectable PFAS at MW02 and MW03 indicates that there is likely to be limited migration of PFAS in groundwater to the north and west of the firefighting training area. The extent of the impact from MW01 to the north-east is unknown. Further investigation should be conducted to confirm this, considering there may be a north-east groundwater flow component and that this may connect to ecological receptors in Edward River (approximately 2.8 km to the

east and north of the site, Section 2.3.5) and drinking water receptors in Deniliquin (1.7 km east and north of the site).

#### PFAS in surface water

All surface water samples exceeded the WA DER (2017) ecological guidelines. This indicates that there is a potential risk to freshwater aquatic receptors. It is likely that the PFAS impact in surface water is from sediment leachate.

Considering the PFAS concentration in sediment samples was noted to decrease with distance from the site, and likely dilution of surface waters with increasing distance from the source, it would be expected that the concentration of PFAS in surface water samples would also decreased with distance from the site. However, this was not observed. SW03 (duplicate sample) had the highest PFAS concentration by and order of magnitude, despite being the furthest from the site. The concentration of PFHxS (sum of total) at this location exceeded both the adopted drinking water. The concentration of PFHxS (sum of total) also exceeded the drinking water guidelines at SW01, located up gradient of SW03. Further sampling of surface waters should be conducted to delineate the extent of PFAS impact down gradient of SW03, along the drainage line to the north of the site.

It is noted that SW03 also exceed the recreational guidelines for PFHxS and PFOS (sum of total). The location of the sample point is off-site in a roadside verge (drainage ditch). It is unlikely to be used for recreational purposes, and this exceedance is therefore unlikely to represent an unacceptable risk to recreational receptors.

## 7.3 EPA site prioritisation

EnRisk (2016) presents a decision tree process and trigger points to enable prioritisation of sites based on the findings of investigation. Trigger points for soil leachate, surface water and groundwater as reported by EnRisk (2016), are summarised below with reference to the analytical data collected during this preliminary stage of assessment.

#### Soil leachate data

- Trigger point 1: Soil leachate data reported above 100 μg/L2
- Trigger point 2: Soil leachate data reported above 1 µg/L

The maximum total PFAS concentration reported for soil leachate data was 756  $\mu$ g/L collected from SB02, classifying the site as a 'Priority 1 site' under the EnRisk (2016) decision tree process based on soil leachate data.

#### Groundwater and surface water data

- Trigger point 1 (elevated contamination): Groundwater or surface water data reported above 10 µg/L<sub>3</sub>
- Trigger point 2: Groundwater or surface water data reported between 0.1 µg/L to 10 µg/L
- Trigger point 3 (low levels of contamination): Groundwater or surface water data reported between 0.05 µg/L to 0.1 µg/L

<sup>&</sup>lt;sup>2</sup> Trigger points values can be applied to PFOS alone or to the sum of PFAS as discussed by EnRisd (2016)

<sup>3</sup> Trigger points values can be applied to PFOS alone or to the sum of PFAS as discussed by EnRisd (2016)

The maximum total PFAS concentration reported for surface water was  $150 \mu g/L$  in SW03 (duplicate sample) collected from the drainage line, north of the site. The site would therefore be classified as a priority 1 site (where on-site surface water results are above trigger point 1).

Total PFAS concentrations in groundwater on site range between <0.02 and 0.88  $\mu$ g/L. Under the EnRisk (2016) decision tree process, the site would be classified as priority 2 based on groundwater samples from on-site bores being reported between trigger points 2 and 3.

## 7.3.1 Overall prioritisation of the site

As outlined above, groundwater analytical data would classify the site as a priority 2 site for further investigation based on the data reported both on and off site. Surface water and soil leachate data indicated that the site should be classified as priority 1 owing the presence of total PFAS concentrations exceeding trigger point 1.

The conclusions and recommendations made in Section 9 of this report take into account this prioritisation.

# 8. Conceptual site model

It is noted that the primary objective of this investigation is to assess the historical impacts from fire training activities. Fire training activities are the key issue of concern for the site and the primary contaminants of potential concern (COPC) are therefore PFAS, notably PFOS and PFOA, which were components of AFFF. The CSM concentrates primarily on PFAS as the main COPC for the site and is the key driver for any additional work at the site.

Based on the sampling analytical results, the conceptual site model from the PSI (GHD, 2016) has been refined. The potential source-pathway-receptor linkages are summarised below (Table 8-1).

## 8.1 Sources

The site is currently occupied by FRNSW and is used by staff as storage space and fire training. AFFF containing PFAS are no longer used at the site.

Based on the findings of the PSI (GHD, 2016) and the results of intrusive investigations, the following primary sources of contamination and associated COPC have been identified:

- The firefighting training area (asphalt surface area) and former AFFF use area on the central to southern portion of the site.
- The storm water drainage channels, on and off-site.

Limited PFAS impact was detected around the former pool, now used for confined space firefighting training. Only one investigation location was near this area, and no sampling was conducted from underneath the pool. It is considered unlikely that there former pool area would be acting as a source zone, however further sampling would be required to confirm this. Site offices including storage of AFFF were identified as a possible source in the PSI (GHD, 2016), however no investigation was conducted around this area. Further sampling around this location should therefore be conducted to confirm the presence or absence of PFAS impact in soils and groundwater. Impacted soils and sediments which have migrated from the main source zones (including to off-site locations), with subsequent leaching of PFAS, represent a secondary source of contamination.

Sources of potential contaminants such as hydrocarbons were not assessed as part of this scope of work. Potential sources of other contaminants identified in the PSI (GHD, 2016) include:

- The firefighting training area (asphalt surface area) fuel for ignition likely to have been used
- The former pool area fuel for ignition likely to have been used
- Minor spills of petroleum hydrocarbons and oils from vehicles traversing the site. The main contaminants associated with fuel spills are expected to include petroleum hydrocarbons and polycyclic aromatic hydrocarbons.

## 8.2 Receptors

When evaluating potential adverse health / environmental effects from exposure to a contaminated site, all potentially exposed populations should be considered. For this investigation, the key populations or receptors of interest are considered to include those identified in section 5.2.

# 8.3 Exposure pathways

The primary pathways by which receptors could be exposed to the sources of contamination outlined above are considered to be:

- Dermal contact with contaminated shallow soil, sediments and dust.
- Incidental ingestion of contaminated soils and dust.
- Direct contact or ingestion of groundwater and/or surface water.
- Inhalation of contaminated soils or dust.
- Vertical and horizontal migration of contaminated liquid through the unsaturated zone into the saturated zone, and subsequent horizontal migration within the groundwater and subsequent discharge to surface waters. The US EPA (2014) notes that PFAS are water soluble and can migrate readily from soil to groundwater, where they can be transported long distances.
- Surface runoff and sediment transport into storm water drainage and subsequent transport and discharge to surface waters.

Schedule B2 of the NEPM (2013) states that "As a preliminary screening measure, the potential for a vapour intrusion risk should be considered where the Henry's law constant for a substance is greater than 1 x  $10^{-5}$  atm/m<sup>3</sup>/mol and its vapour pressure is > 1 mm Hg at room temperature". US EPA (2014) list Henry's law constants for PFOS and PFOA of 3.05 x10<sup>-9</sup> atm/m<sup>3</sup>/mol and 'not measurable' respectively, which based on the NEPM (2013) recommendation, suggests inhalation of vapours from these contaminants is unlikely to represent a human health risk at the site.

US EPA (2014) notes that once PFOS and PFOA are released to the atmosphere they are expected to absorb on to particles and settle to the ground through wet and dry deposition.

## 8.3.1 **PFAS** fate and transport

PFAS forms a component of AFFF, which is sprayed onto fires during training events. The mode of use of AFFF through hoses allows for it to spread through airborne dispersion beyond the training area. Typically, this results in diffuse low levels of PFAS over a wider area. Generally, the highest soil concentrations tend to be at the point source.

PFAS are stable and persistent compounds that do not readily degrade in the environment.

Once in soil, PFAS can leach from soil to water (due to its solubility in water) as water migrates downward through soil to the water table, resulting in contaminated groundwater. Generally, the shorter chain PFAS species are more soluble than the longer chain PFAS. Groundwater will migrate and discharge into the nearest down gradient surface water body – in the case of the site the main discharge area is likely to be either Aljoes Creek approximately 2.5 km to the east of Edward River approximately 3 km north and east of site. The river is likely to be used for recreational activities and fishing purposes.

Migration through the soil will depend on the attenuation properties of the soil. Some components of the soil (notably organic carbon) can sorb PFAS components. Generally, the longer chain PFAS species will sorb more readily. This, combined with the lower solubility of the longer PFAS species, can result in mainly shorter chain PFAS species being dissolved in water while the large molecules remain in the soil.

The surface water on-site is diverted to an unlined surface drain that discharges into an off-site dam approximately 150 m to the north of the site. It is unlikely this will discharge into any natural water bodies. However, it has the potential to leach vertically into the local groundwater.

Plants (including aquatic plants) have the ability to uptake PFAS through impacted soil water. Grasses and other flora can be consumed by micro- and macro-fauna, which may in turn be predated.

The main risks to human health mainly arise through ingestion of impacted media i.e. soil, water or organisms.

In terms of risks to ecological receptors, while contamination can give rise to direct toxic effects on ecosystems, the limiting factor can be the bioaccumulation of contaminants in fish or other species affecting persons or other animals that consume these fish or other species.

## 8.4 Source-pathway-receptor linkages

Based on the current information, the following CSM has been developed for on-site sources of contamination in Table 8-1 below and presented in Figure 8, Appendix A.

| Potential source                                                     | Primary pathway                                                             | Receptor                                                                             | Pathway present?                                                                                                                                                                                                                                                        |
|----------------------------------------------------------------------|-----------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Soils in<br>firefighting<br>training area<br>(central to<br>southern | Dermal contact                                                              | FRNSW commercial<br>workers                                                          | Unlikely – PFAS impact detected<br>in shallow soil samples from this<br>area (SB01-SB04) however<br>impact below adopted<br>assessment criteria.                                                                                                                        |
| portion of the<br>site)<br>contaminated<br>with PFAS                 |                                                                             | Intrusive maintenance<br>workers                                                     | Unlikely – PFAS impact detected<br>in shallow soil samples from this<br>area (SB01-SB04) however,<br>impact below adopted<br>assessment criteria.                                                                                                                       |
|                                                                      | Vertical/horizontal<br>migration of<br>leachate through<br>unsaturated zone | Groundwater –<br>subsequent migration<br>in groundwater<br>(secondary)               | Yes – PFAS impact reported in MW01 located in the training area.                                                                                                                                                                                                        |
|                                                                      | Surface runoff<br>and sediment<br>transport<br>(including                   | Surface waters<br>(including drainage<br>systems – secondary<br>pathway)             | Yes – PFAS detected in sediment samples from drainage lines associated with this area.                                                                                                                                                                                  |
|                                                                      | leachate –<br>secondary<br>source)                                          | Off-site rural<br>commercial/ industrial<br>properties (and<br>possible residential) | Yes – sediment samples along<br>drainage line off-site contain<br>PFAS.                                                                                                                                                                                                 |
|                                                                      |                                                                             | Off-site ecological<br>(terrestrial and aquatic)                                     | Yes – off-site surface water<br>indicate PFAS impact above<br>ecological screening criteria,<br>which is likely to be associated<br>with this area in the FRNSW site.<br>On site soil sample from SB02<br>also exceeded the ecological<br>criteria, however the site is |

## Table 8-1 Updated CSM

| Potential source                                                   | Primary pathway                                                               | Receptor                                                                                                                                              | Pathway present?                                                                                                                                                                                                                                                                                                                                                                                              |
|--------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                    |                                                                               |                                                                                                                                                       | considered commercial/industrial<br>and risks to on-site ecological<br>receptors are considered to be<br>low under the current land use<br>scenario. All off-site surface water<br>samples report PFAS<br>concentrations above the adopted<br>ecological guidelines.                                                                                                                                          |
| Contaminated<br>groundwater                                        | Vertical/horizontal<br>migration                                              | Down gradient surface<br>waters recharged by<br>groundwater                                                                                           | Possible – PFAS impact detected<br>above adopted assessment<br>criteria in up-gradient well<br>(MW01) and groundwater impact<br>un-delineated to the north-east,<br>therefore the extent of<br>contamination in groundwater and<br>hydraulic connection to surface<br>waters requires further<br>assessment. However no impact<br>was detected in wells MW02 and<br>MW03 north and west MW01<br>respectively. |
|                                                                    |                                                                               | Abstraction bores<br>(stock and/or domestic<br>use)                                                                                                   | Possible – PFAS impact detected<br>above adopted assessment<br>criteria in up-gradient well<br>(MW01) Limited delineation of<br>groundwater in direction of<br>closest beneficial use bore (1.7<br>km east of the site) therefore<br>extent of contamination in<br>groundwater requires further<br>assessment.                                                                                                |
| Site offices,<br>including<br>storage of<br>AFFF                   | Dermal contact,<br>Vertical/horizontal<br>migration of<br>leachate through    | FRNSW commercial<br>workers, intrusive<br>maintenance workers,<br>groundwaters, surface                                                               | Possible – AFFF known to be<br>present, and no sampling of this<br>area to confirm<br>presence/absence of PFAS.                                                                                                                                                                                                                                                                                               |
| Former pool<br>area, now<br>used for<br>confined<br>space training | unsaturated<br>zone,<br>And/or<br>Surface runoff<br>and sediment<br>transport | waters, off-site rural<br>commercial/ industrial<br>properties (and<br>possible residential),<br>and off-site ecological<br>(terrestrial and aquatic) | Possible – limited PFAS impact<br>was detected at single<br>investigation location (MW03)<br>however limited data from around<br>and underneath the area (to<br>account for possible leaching).                                                                                                                                                                                                               |

# 9. Conclusions and recommendations

## 9.1 Conclusions

The overall objective of this investigation is to characterise impacts and subsequently assess the potential risks to human health and the environment from historical firefighting training activities (specifically those involving PFAS) in the FRNSW site. Based on the scope of works presented in Section 1.3 of this report, the findings of the investigation and subject to the limitations presented in Section 11, the following conclusions are made:

• The inferred groundwater flow was in a northerly direction, and regional flows are likely to be towards the east and north. GHD notes that this interpretation of groundwater flow direction is based on a small number of wells (three) over a relatively large surface area and as such, groundwater flow direction should be reviewed in the context of the available site data.

All soil results were below the nominated screening criteria for all COPC for the protection of human health. Risks associated with direct contact or accidental ingestion of PFAS impacted soils on site is therefore considered low, however the presence of PFAS in soils represents a potential on-going source and risk to groundwater and surface water receptors.

- Leachability testing confirmed that PFAS impacted soils and sediments have the potential to release PFAS to the environment at concentrations exceeding the nominated screening levels.
- All off-site sediment samples reported detects of PFAS. This indicates that PFAS is likely to be migrating off-site via the surface water drainage pathways.
- Based on the EnRisk (2016) decision tree process for prioritisation, the site is currently classified as a priority 1 site based on detections of PFAS in soil and surface water at concentrations exceeding trigger value 1. It is important to note that the trigger point system has not been designed to be protective of all risks to people or the environment but is designed to assist with prioritisation of sites for further assessment and management.

## 9.2 **Recommendations**

Based on the findings of these works, the following recommendations are made:

- A survey of water use be conducted to better characterise groundwater and surface water use down gradient of the FRNSW site. This should include investigation into how often the final surface water dams along the drainage line would over top.
- Consideration of immediate management actions which can be implemented to address the mass of PFAS present on site and minimise further migration. These management actions may include, but not be limited to:
  - Drainage channels between the dams could be cleared out to remove soils and sediments which are likely to act as potential leaching sources.
  - Removal of impacted soils under and around the fire training area on the central to southern portion of the FRNSW site to remove the primary source zone.
- Additional sampling should be undertaken following the implementation of any management actions. Sampling should be undertaken to accommodate seasonal fluctuation and, for example, following rainfall events to enable assessment of the areas where surface water collects from the ponds.

• Additional off site investigation to assess whether impacted groundwater is migrating towards other potential abstraction points down gradient of the site towards the east and north-east.

# 10. References

ANZECC (2000). National Water Quality Management Strategy, Paper No. 4, Australian and New Zealand Guidelines for Fresh and Marine Water Quality, October 2000,

Australian and New Zealand Environment and Conservation Council (ANZECC) and Agriculture and Resource Management Council of Australia and New Zealand (ARMCANZ).

AS4482 (1999 and 2005). Guide to the investigation and sampling of sites with potentially contaminated soil.

AS/NZS5567.11 (1998). Water Quality – Sampling – Guidance on the sampling of groundwater.

ASRIS (2013) Australian Soil Resource Information System, 2013

Australian and New Zealand Environmental Conservation Council (ANZECC & ARMCANZ 2000) Australian and New Zealand Guidelines for Fresh and Marine Water Quality

Deniliquin LEP 2013

Department of Mineral Resources and Energy (1971) *1:250,000 Geological Series Sheet 5610&11, Dorrigo and Coffs Harbour.* NSW Department of Mineral Resources and Energy, Sydney, NSW

Department of Water Resources (1987) Groundwater in New South Wales: Assessment of *Pollution Risk*. Department of Water Resources, Sydney, NSW

GHD (2016) Deniliquin PFAS Investigation, Preliminary Site Investigation and Sampling and Analysis Quality Plan. August 2016.

DER (2016); Interim Guideline on the Assessment and Management of Perfluoroalkyl and *Polyfluoroalkyl Substances (PFAS), Contaminated Site Guidelines;* WA Department of Environment Regulations Perth, Western Australia.

EnRisk (2016) *Proposed decision tree for prioritising sites potentially contaminated with PFAS.* 25 February 2016

National Health and Medical Research Council (NHMRC & NRMMC 2011) Australian Drinking Water Guidelines

National Health and Medical Research Council (NHMRC 2008) *Guidelines for Managing Risk in Recreational Waters* 

National Uniform Drillers Licensing Committee (2011) *Minimum Construction Requirements for Water Bores in Australia* (Edition 3, 2012)

NEPC (2013) National Environmental Protection (Assessment of Site Contamination) Amended Measure (NEPM) No. 1 – Schedule B1, Guideline on Investigation Levels for Soil and Groundwater

NSW DEC, 2006; Contaminated Sites: Guidelines for NSW Site Auditor Scheme

NSW DECC, 2009; Guidelines on the Duty to Report Contamination under the Contaminated Land Management Act 1997

NSW EPA, 1995; Contaminated Sites: Sampling Design Guidelines

Office of Environment and Heritage (OEH), 2011; Contaminated Sites: Guidelines for Consultants Reporting on Contaminated Sites

US EPA, 2014; Emerging Contaminants – Perfluorooctane Sulfonate (PFOS) and Perfluoroactanoic Acid (PFOA), Emerging Contaminants Fact Sheet – PFOS and PFOA US EPA, 2014a; Health Effects Document for Perfluorooctanoic Acid (PFOA); US EPA Washington DC, United States.

US EPA, 2014b; Health Effects Document for Perfluorooctane Sulfonate (PFOS); US EPA Washington DC, United States

# **11. Limitations**

This report has been prepared by GHD for Fire & Rescue NSW and may only be used and relied on by Fire & Rescue NSW for the purpose agreed between GHD and the Fire & Rescue NSW as set out in this report.

GHD otherwise disclaims responsibility to any person other than Fire & Rescue NSW arising in connection with this report. GHD also excludes implied warranties and conditions, to the extent legally permissible.

The services undertaken by GHD in connection with preparing this report were limited to those specifically detailed in the report and are subject to the scope limitations set out in the report.

The opinions, conclusions and any recommendations in this report are based on conditions encountered and information reviewed at the date of preparation of the report. GHD has no responsibility or obligation to update this report to account for events or changes occurring subsequent to the date that the report was prepared.

The opinions, conclusions and any recommendations in this report are based on assumptions made by GHD described throughout this report. GHD disclaims liability arising from any of the assumptions being incorrect.

Where data supplied by Fire & Rescue NSW or other external sources, including previous site investigation data and site plans, have been used, it has been assumed that the information is correct unless otherwise stated. No responsibility is accepted by GHD for incomplete or inaccurate data supplied by others.

The opinions, conclusions and any recommendations in this report are based on information obtained from, and testing undertaken at or in connection with, specific sample points. Site conditions at other parts of the site may be different from the site conditions found at the specific sample points.

Investigations undertaken in respect of this report are constrained by the particular site conditions, such as the location of buildings, services and vegetation. As a result, not all relevant site features and conditions may have been identified in this report.

Site conditions (including the presence of hazardous substances and/or site contamination) may change after the date of this Report. GHD does not accept responsibility arising from, or in connection with, any change to the site conditions. GHD is also not responsible for updating this report if the site conditions change.

# Appendices

# Appendix A – Figures







Major Waterways

| 0 50 100 200 300                                                                                          | Fire & Rescue NSW<br>Deniliquin Site Investigation | Job Number<br>Revision<br>Date |         |
|-----------------------------------------------------------------------------------------------------------|----------------------------------------------------|--------------------------------|---------|
| Metres<br>Map Projection: Transverse Mercator<br>Horizontal Datum: GDA 1994<br>Grid: GDA 1994 MGA Zone 55 | Site Location and Key<br>Off-site Receptors        | F                              | igure 1 |

Level 15, 133 Castlereagh Street Sydney NSW 2000 T 61 2 9239 7100 F 61 2 9239 7199 E sydmail@ghd.com.au W www.ghd.com.au

G:\21\25583\GIS\Maps\Deliverables\Deniliquin\21\_25583\_Z001\_Deniliquin\_SiteLocation.mxd Level 15, 133 Castlereagh Street Sydney NSW 2000 **T** 61 2 9239 7100 **F** 61 2 9239 7199 **E** sydmail@ghd.com.au **W** www.ghd.com.au **©** 2017. Whilst every care has been taken to prepare this map, GHD and NSW LPI make no representations or warranties about its accuracy, reliability, completeness or suitability for any particular purpose and cannot accept liability and responsibility of any kind (whether in contract, tort or otherwise) for any expenses, losses, damages and/or costs (including indirect or consequential damage) which are or may be incurred by any party as a result of the map being inaccurate, incomplete or unsuitable in any way and for any reason.

Data source: Imagery - Google Earth Pro; Streets, Waterways - NSW LPI 2012 DTDB. Created by:tnham





Site Boundary – – Minor Waterways

Cadastre – Surface Drainage

Streets

Major Waterways



G:\21\25583\GIS\Maps\Deliverables\Deniliquin\21\_25583\_Z002\_Deniliquin\_SiteLayout.mxd

Level 15, 133 Castlereagh Street Sydney NSW 2000 T 61 2 9239 7100 F 61 2 9239 7199 E sydmail@ghd.com.au W www.ghd.com.au

© 2017. Whilst every care has been taken to prepare this map, GHD and NSW LPI make no representations or warranties about its accuracy, reliability, completeness or suitability for any particular purpose and cannot accept liability and responsibility of any kind (whether in contract, tort or otherwise) for any expenses, losses, damages and/or costs (including indirect or consequential damage) which are or may be incurred by any party as a result of the map being inaccurate, incomplete or unsuitable in any way and for any reason.

Data source: Imagery - Google Earth Pro; Streets, Waterways - NSW LPI 2012 DTDB. Created by:tnham



Site Boundary

-- Surface Drainage

Streets

- Groundwater Monitoring Well (GHD, 2016) (3)
- Shallow Soil Borehole (GHD, 2016) (3)
- Deep Soil Borehole (GHD, 2016) (2)
- Sediment Sample Location (GHD, 2016) (7)
- Surface Water Sample Location (GHD, 2016) (3)



Contract, for or otherwise) for any expenses, losses, damages and/or costs (including indirect or consequential damage) which are or may be incurred by any party as a result of the map being inaccurate, incomplete or unsuitable in any way and for any reason.

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | try.                      |                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SB05 - Soil Bore (mg/kg)         0.1         1.0                                                                                                                                                                                                                                                                                                                                                                                                                                           |                           | SSOT SWO3                                                                                                                                                                              | SS07 - Sediment (mg/kg)           PFHxS and PFOS         0.025           PFOA         <0.0002           PFAS (WA DER List)         0.025           PFAS (WA DER List)         0.025                                                                                                                                         |
| SB05 - Soli Bore (mg/kg)         0.1         1.0           PFHxS and PFOS         0.0047         <0.0002                                                                                                                                                                                                                                                                                                                                                                                   | SB05                      |                                                                                                                                                                                        | PFOA         0.0002           PFAS (WA DER List)         0.0355           SS05 - Sediment (mg/kg)           PFHxS and PFOS         0.043           PFOA         0.0032           PFAS (WA DER List)         0.0577           SS03 - Sediment (mg/kg)           PFHxS and PFOS         0.0098           PFOA         <0.0002 |
| PFAS (WA DER List)       0.414       0.0697 (QA)         MW02 - Soil Bore (mg/kg)       0.1       13.5         PFHxS and PFOS       0.0026       <0.0002         PFOA       <0.0002       <0.0002         PFAS (WA DER List)       0.0036       <0.0002         SB02 - Soil Bore (mg/kg)       0.1       1.0         PFHxS and PFOS       12.8       0.29         PFOA       0.232       0.0113         PFOS       10.7       0.0778                                                       | SE01<br>SB02<br>SE03 SE04 | SS03<br>SS03<br>SS03<br>SS03<br>SS03<br>SS03<br>SS03<br>SS04 - Soil Bore (mg/kg) 0.15 2.0<br>PFHxS and PFOS 0.749 0.0147<br>PFOA 0.0143 0.0002<br>PFAS (WA DER List) 0.852 0.0613 (QA) | SS04 - Sediment (mg/kg)           PFHxS and PFOS         0.0306           PFOA         0.0003           PFAS (WA DER List)         0.0326   SW02                                                                                                                                                                            |
| PFAS (WA DER List)         15.7         0.652           SB03 - Soil Bore (mg/kg)         0.1         13.5           PFHxS and PFOS         0.462         0.206           PFOA         0.0022         0.0148           PFAS (WA DER List)         0.485         0.492           MW01 - Soil Bore (mg/kg)         0.1         9.0           PFHxS and PFOS         1.36         0.0394           PFOA         0.0158         0.0005           PFAS (WA DER List)         1.46         0.0437 | SS01                      | SS02 - Sediment (mg/kg)       PFHxS and PFOS     0.284       PFOA     0.0031       PFAS (WA DER List)     0.356                                                                        |                                                                                                                                                                                                                                                                                                                             |

SS01 - Sediment (mg/kg)



### LEGEND

Site Boundary

-- Surface Drainage

Streets

- Groundwater Monitoring Well (GHD, 2016) (3)
- Shallow Soil Borehole (GHD, 2016) (3)
- Deep Soil Borehole (GHD, 2016) (2)
- Sediment Sample Location (GHD, 2016) (7)
- Surface Water Sample Location (GHD, 2016) (3)



G:\21\25583\GIS\Maps\Deliverables\Deniliquin\21\_25583\_Z006\_Deniliquin\_Soil\_Exceedances.mxd

Level 15, 133 Castlereagh Street Sydney NSW 2000 T 61 2 9239 7100 F 61 2 9239 7199 E sydmail@ghd.com.au W www.ghd.com.au

0 2017. Whilst every care has been taken to prepare this map, GHD and NSW LPI make no representations or warranties about its accuracy, reliability, completeness or suitability for any particular purpose and cannot accept liability and responsibility of any kind (whether in contract, tort or otherwise) for any expenses, losses, damages and/or costs (including indirect or consequential damage) which are or may be incurred by any party as a result of the map being inaccurate, incomplete or unsuitable in any way and for any reason. Data source: Imagery - Google Earth Pro; Streets, Waterways - NSW LPI 2012 DTDB. Created by:thham

|                                                                                                                            |                                                                                                                                                                                                                                    |                                                                                                                |                   |                         |                                                                                                                                          | A                                                 | A-8240 - 44 |                                                                                                                                                                    |                                                                |
|----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-------------------|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|
| 1                                                                                                                          |                                                                                                                                                                                                                                    | P                                                                                                              |                   |                         |                                                                                                                                          | SS07 SW03                                         |             | SS07 - ASLP (µg/L)                                                                                                                                                 |                                                                |
|                                                                                                                            | <mark>SB05 - ASLP (µg/L)</mark><br>PFHxS and PFOS<br>PFOA<br>PFAS (WA DER List)<br>MW03 - ASLP (µg/L)<br>PFHxS and PFOS                                                                                                            | 0.1<br>0.18<br>0.09<br>0.27<br>0.1                                                                             |                   | MACKAILER.              |                                                                                                                                          | SS06<br>* SW01                                    |             | PFHxS and PFOS<br>PFOA<br>PFAS (WA DER List)<br>SS06 - ASLP (µg/L)<br>PFHxS and PFOS<br>PFOA<br>PFAS (WA DER List)<br>SS05 - ASLP (µg/L)<br>PFHxS and PFOS<br>PFOA | 1.26<br><0.01<br>1.26<br>2.27<br><0.01<br>2.29<br>1.41<br>0.12 |
| 1                                                                                                                          | PFRXs and PFOS<br>PFOA<br>PFAS (WA DER List)<br>SB01 - ASLP (µg/L)<br>PFHXS and PFOS<br>PFOA<br>PFAS (WA DER List)<br>MW02 - ASLP (µg/L)<br>PFHXS and PFOS<br>PFOA<br>PFAS (WA DER List)                                           | 0.39<br>0.16<br>0.65<br>0.1<br>17<br>0.32<br>19.5<br>0.1<br>0.18<br><0.01<br>0.22                              | SE05              |                         | STATISTICS STATISTICS                                                                                                                    | \$503                                             | 5           | PFAS (WA DER List) SS03 - ASLP (µg/L) PFHxS and PFOS PFOA PFAS (WA DER List) SS04 - ASLP (µg/L) PFHxS and PFOS PFOA PFAS (WA DER List)                             | 1.71<br>1.22<br>0.02<br>1.26<br>0.36<br><0.01<br>0.36          |
| SB03 - AS<br>PFHxS and<br>PFOA<br>PFAS (WA<br>MW01 - AS<br>PFHxS and<br>PFOA<br>PFAS (WA<br>MW01 - TO<br>PFHxS and<br>PFOA | d PFOS         17           0.09         0.09           A DER List)         17.7           SLP (µg/L)         0.1           d PFOS <u>137</u> 0.77         0.77           A DER List)         143           CLP (µg/L)         0.1 | 0.1<br>756<br>9.88<br>862<br>1.0<br>6.05<br>0.29<br>21.5<br>9.0<br>3.43<br>0.04<br>4.18<br>9.0<br>2.08<br>0.02 | SB02<br>SB03 SE04 | 5502<br>*<br>*<br>\$S01 | SB04 - ASLP (µg/L)<br>PFHxS and PFOS<br>PFOA<br>PFAS (WA DER List)<br>SS02 - ASLP (µg/L)<br>PFHxS and PFOS<br>PFOA<br>PFAS (WA DER List) | 0.15<br>51.7<br>0.8<br>56.8<br>29<br>0.11<br>31.3 |             | SV<br>CONTRACTOR                                                                                                                                                   |                                                                |



Site Boundary

-- Surface Drainage

Streets

PFOA

PFAS (WA DER List)

• Groundwater Monitoring Well (GHD, 2016) (3)

0.9

116

0.02

2.62

- Shallow Soil Borehole (GHD, 2016) (3)
- Deep Soil Borehole (GHD, 2016) (2)
- Sediment Sample Location (GHD, 2016) (7)
- Surface Water Sample Location (GHD, 2016) (3)



G:\21\25583\GIS\Maps\Deliverables\Deniliquin\21\_25583\_Z007\_Deniliquin\_ASLP\_Exceedances.mxd

Level 15, 133 Castlereagh Street Sydney NSW 2000 T 61 2 9239 7100 F 61 2 9239 7199 E sydmail@ghd.com.au W www.ghd.com.au

0 2017. Whilst every care has been taken to prepare this map, GHD and NSW LPI make no representations or warranties about its accuracy, reliability, completeness or suitability for any particular purpose and cannot accept liability and responsibility of any kind (whether in contract, tort or otherwise) for any expenses, losses, damages and/or costs (including indirect or consequential damage) which are or may be incurred by any party as a result of the map being inaccurate, incomplete or unsuitable in any way and for any reason. Data source: Imagery - Google Earth Pro; Streets, Waterways - NSW LPI 2012 DTDB. Created by:thham



Exceeds NEPM 2013 Table 1C GILs, Drinking Water

Exceeds NEPM 2013 Table 1C GILs, Fresh Waters

Exceeds NHMRC Recreational Guidelines 2008

### LEGEND

Site Boundary

-- Surface Drainage

Streets

- Groundwater Monitoring Well (GHD, 2016) (3)
- Shallow Soil Borehole (GHD, 2016) (3)
- Deep Soil Borehole (GHD, 2016) (2)
- Sediment Sample Location (GHD, 2016) (7)
- Surface Water Sample Location (GHD, 2016) (3)

| 0 10 20 40 60 80                                                                                          |     |                                              | vision | 21-25583<br>A<br>03 Mar 2017 |
|-----------------------------------------------------------------------------------------------------------|-----|----------------------------------------------|--------|------------------------------|
| Metres<br>Map Projection: Transverse Mercator<br>Horizontal Datum: GDA 1994<br>Grid: GDA 1994 MGA Zone 55 | GHD | Groundwater and<br>Surface Water Exceedances | F      | igure 6                      |

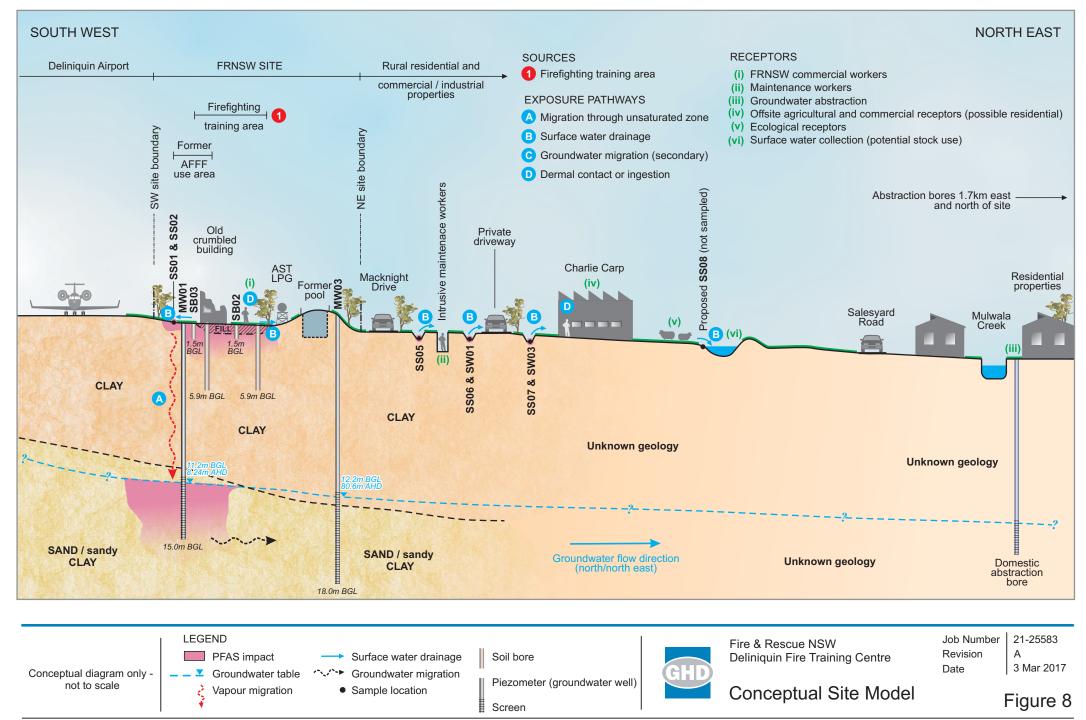
G:\21\25583\GIS\Maps\Deliverables\Deniliquin\21\_25583\_Z005\_Deniliquin\_Water\_Exceedances.mxd

Level 15, 133 Castlereagh Street Sydney NSW 2000 T 61 2 9239 7100 F 61 2 9239 7199 E sydmail@ghd.com.au W www.ghd.com.au

© 2017. Whilst every care has been taken to prepare this map, GHD and NSW LPI make no representations or warranties about its accuracy, reliability, completeness or subtlifty for any particular purpose and cannot accept liability and responsibility of any kind (whether in contract, tort or otherwise) for any expenses, losses, damages and/or costs (including indirect or consequential damage) which are or may be incurred by any party as a result of the map being inaccurate, incomplete or unsuitable in any way and for any reason. Data source: Imagery - Google Earth Pro; Streets, Waterways - NSW LPI 2012 DTDB. Created by:tham



Site Boundary


-- Surface Drainage

Streets

- Interpolated Groundwater Contours (mAHD)
- Groundwater Monitoring Well (GHD, 2016) (3)
- Shallow Soil Borehole (GHD, 2016) (3)
- Deep Soil Borehole (GHD, 2016) (2)
- Sediment Sample Location (GHD, 2016) (2)

| 0 5 10 20 30 40<br>Metres                                                                       | Fire & Rescue NSW<br>Deniliquin Site Investigation | Job Number   21-25583<br>Revision   A<br>Date   03 Mar 2017 |
|-------------------------------------------------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------|
| Map Projection: Transverse Mercator<br>Horizontal Datum: GDA 1994<br>Grid: GDA 1994 MGA Zone 55 | Groundwater Contours                               | Figure 7                                                    |

G12125583/GISWaps/Deliverables/Deniliquin/21\_25583.Z008\_Deniliquin\_Groundwater\_Contours.mxd © 2017. Whilst every care has been taken to prepare this map, GHD and NSW LPI make no representations or warranties about its accuracy, reliability, completeness or suitability for any particular purpose and cannot accept liability and responsibility of any kind (whether in contract, tot or otherwise) for any expenses, losses, damages and/or costs (including indirect or consequential damage) which are or may be incurred by any particular purpose and cannot accept liability and responsibility of any reason. Data source: Imagery - Google Earth Pro; Streets, Waterways - NSW LPI 2012 DTDB. Created by:thnam



GHD\Launceston\Projects\21\25583\2125583\_LTN\_08.cdr

Level 15, 133 Castlereagh Street Sydney NSW 2000 T 61 2 9239 7100 F 61 2 9239 7199 E sydmail@ghd.com W www.ghd.com

© 2017. While GHD has taken care to ensure the accuracy of this product, GHD make no representations or warranties about its accuracy, completeness or suitability for any purpose. GHD cannot accept liability of any kind (whether in contract, tort or otherwise) for any expenses, losses, damages and/or costs (including indirect or consequential damage) which are or may be incurred as a result of the product being inaccurate, incomplete or unsuitable in any way and for any reason. Created by B.Watt.

**Appendix B** – Analytical results summary tables

#### Appendix B Table A Soil and sediment analytical results

|                                                                          |                      |                        | Cations                |                     |     |              |      | Particle          | izing |                    | Soil C | lassificati | on TOC             | Pa                                   | rticle Siz                               | e Analys | sis by Hyd                     | dr | Inorganics          |           |                   |         |                   | 1         | Metals |                    |
|--------------------------------------------------------------------------|----------------------|------------------------|------------------------|---------------------|-----|--------------|------|-------------------|-------|--------------------|--------|-------------|--------------------|--------------------------------------|------------------------------------------|----------|--------------------------------|----|---------------------|-----------|-------------------|---------|-------------------|-----------|--------|--------------------|
|                                                                          | Exchangeable Calcium | Exchangeable Magnesium | Exchangeable Potassium | Exchangeable Sodium | CEC | <del>-</del> | +2.3 | +4.75mm<br>+9.5mm |       | +37.5mm<br>+75.0mm | 5 3    | 5 5         | Total Organic Carl | Сlay (<2 µm)<br>сн. л. 40 г. н. син. | air (z-oc prir) EA 130H<br>+600µm EA150H | +150µI   | +300µm EA150H<br>+425µm EA150H |    | DENSITY<br>Motsture | Aluminium | Arsenic           | Cadmium | Chromium (III+VI) | Copper    | Iron   | Lead               |
|                                                                          | · · · · ·            | meq/100g               |                        |                     |     | %            | %    | % %               | %     | % %                | 6 %    | % 9         | 0 /0               | % %                                  | 6 %                                      | %        | % %                            | 8  | g/cm3 %             |           |                   |         | mg/kg             |           |        | mg/kg              |
| EQL                                                                      | 0.1                  | 0.1                    | 0.1                    | 0.1                 | 0.1 | 1            | 1    | 1 1               | 1     | 1   1              | 1      | 1 1         | 0.02               | 1                                    | 1   1                                    | 1        | 1   1                          | 1  | 0.01 1              | 50        | 2                 | 0.4     | 5                 | 5         | 50     | 5                  |
| DER (2017) Interim PFAS Guidelines - Health commercial/industrial        |                      |                        |                        |                     |     |              |      |                   |       |                    |        |             |                    |                                      |                                          |          |                                |    |                     |           |                   |         |                   |           |        |                    |
| DER (2017) Interim PFAS Guidelines - Health residential                  |                      |                        |                        |                     |     |              |      |                   |       |                    |        |             |                    |                                      |                                          |          |                                |    |                     |           |                   |         |                   |           |        |                    |
| DEE (2016) Draft Management Guidance on PFOS and PFOA - ecological value |                      |                        |                        |                     |     |              |      |                   |       |                    |        |             |                    |                                      |                                          |          |                                |    |                     |           |                   |         |                   |           |        |                    |
| NEPM 2013 EIL-Commercial/Industrial                                      |                      |                        |                        |                     |     |              |      |                   |       |                    |        |             |                    |                                      |                                          |          |                                |    |                     |           | 160               |         |                   | 85        |        | 1800               |
| NEPM 2013 EIL-Urban Residential- Public Open Space                       |                      |                        |                        |                     |     |              |      |                   |       |                    |        |             |                    |                                      |                                          |          |                                |    |                     |           | 100               |         |                   | <u>60</u> |        | <u>1100</u>        |
| NEPM 2013 Table 1A(1) HIL D Comm/Ind                                     |                      |                        |                        |                     |     |              |      |                   |       |                    |        |             |                    |                                      |                                          |          |                                |    |                     |           | 3000 #1           | 900     | 3600 #2 2         | 240000    |        | 1500 <sup>#3</sup> |
| NEPM 2013 Table 1A(1) HIL A Res                                          |                      |                        |                        |                     |     |              |      |                   |       |                    |        |             |                    |                                      |                                          |          |                                |    |                     |           | 100 <sup>#1</sup> | 20      | 100 <sup>#2</sup> | 6000      |        | 300 <sup>#3</sup>  |

| SampleCode   | Field_ID        | Location_Code | Sample_Depth_Rang | ge Sampled_Date_Time |      |      |      |     |      |    |    |      |      |    |      |      |    |        |        |      |    |        |        |      |      |        |     |       |    |     |        |     |
|--------------|-----------------|---------------|-------------------|----------------------|------|------|------|-----|------|----|----|------|------|----|------|------|----|--------|--------|------|----|--------|--------|------|------|--------|-----|-------|----|-----|--------|-----|
| EM1614608035 | MW01_0.1        | MW01          | 0.1               | 30/11/2016           | 1.8  | 1    | 0.2  | 1.6 | 4.6  | 3  | <1 | <1 < | 1 <1 | <1 | <1 < | 1 1  | 30 | 0.26   | 43 2   | 6 8  | 19 | 14 1   | 1 25   | 2.64 | 10.4 | 5530   | -   | -     | -  | -   | 9080   | -   |
| EM1614608037 | MW01_9.0        | MW01          | 9                 | 30/11/2016           | 6    | 8.3  | 0.4  | 5.1 | 19.8 | 3  | <1 | <1 < | 1 <1 | <1 | <1 < | 1 1  | 30 | 0.05   | 35 3   | 4 6  | 14 | 10     | 8 23   | 2.67 | 14.5 | 15,600 | -   | -     | -  | -   | 21,000 | -   |
| EM1614608038 | MW02_0.1        | MW02          | 0.1               | 30/11/2016           | 7.7  | 10.2 | 0.4  | 5.9 | 24.2 | <1 | <1 | <1 < | 1 <1 | <1 | <1 < | 1 <1 | 18 | 0.3    | 53 2   | 9 1  | 5  | 2      | 2 9    | 2.67 | 17.8 | 16,300 | -   | -     | -  | -   | 20,800 | -   |
| S16-De23615  | MW02B_10.2-10.3 | MW02          | 10.2-10.3         | 15/12/2016           | -    | -    | -    | -   | -    | -  | -  |      |      | -  | -    |      | -  | -      |        | -    | -  | -      |        | -    | 14   | -      | 6.1 | < 0.4 | 10 | 5.5 | -      | 6.2 |
| EM1614608040 | MW02_13.5       | MW02          | 13.5              | 30/11/2016           | 1.2  | 1.1  | <0.2 | 1.8 | 4.1  | 20 | 5  | <1 < | 1 <1 | <1 | <1 < | 1 9  | 81 | < 0.02 | 4 6    | 41   | 83 | 69 4   | 2 87   | 2.63 | 12.9 | 2580   | -   | -     | -  | -   | 4480   | -   |
| EM1614608041 | MW03_0.1        | MW03          | 0.1               | 30/11/2016           | 6.3  | 4.2  | 0.4  | 0.6 | 11.4 | 12 | 6  | 2 <  | 1 <1 | <1 | <1 < | 1 7  | 46 | 0.47   | 27 2   | 0 20 | 35 | 29 2   | 25 42  | 2.67 | 11.2 | 13,000 | -   | -     | -  | -   | 17,200 | -   |
| EM1614608042 | MW03_1.0        | MW03          | 1                 | 30/11/2016           | 8.1  | 7.4  | 0.5  | 5   | 21   | 4  | <1 | <1 < | 1 <1 | <1 | <1 < | 1 2  | 32 | 0.16   | 42 2   | 4 8  | 16 | 12 1   | 0 22   | 2.68 | 14.1 | 11,500 | -   | -     | -  | -   | 17,300 | -   |
| S16-De23616  | MW03B_13.8-13.9 | MW03          | 13.8-13.9         | 15/12/2016           | -    | -    | -    | -   | -    | -  | -  |      |      | -  | -    |      | -  | -      |        | -    | -  | -      |        | -    | 14   | -      | 6.9 | <0.4  | 21 | 6.6 | -      | 6.9 |
| EM1614608021 | SB01_0.1        | SB01          | 0.1               | 30/11/2016           | 5.4  | 2.9  | 0.5  | 2   | 10.8 | 3  | <1 | <1 < | 1 <1 | <1 | <1 < | 1 1  | 41 | 0.74   | 30 2   | 8 8  | 20 | 14 1   | 0 28   | 2.64 | 12.2 | 8400   | -   | -     | -  | -   | 14,100 | -   |
| EM1614608023 | SB01_1.0        | SB01          | 1                 | 30/11/2016           | 11.3 | 8.5  | 0.5  | 3.8 | 24.1 | <1 | <1 | <1 < | 1 <1 | <1 | <1 < | 1 <1 | 24 | 0.36   | 51 2   | 5 1  | 5  | 2      | 2 10   | 2.68 | 19.2 | 11,700 | -   | -     | -  | -   | 17,000 | -   |
| EM1614608043 | FD02            | SB01          | 1                 | 30/11/2016           | -    | -    | -    | -   | -    | -  | -  |      |      | -  | -    |      | -  | 0.38   |        | -    | -  | -      |        | -    | 18.4 | 17,500 | -   | -     | -  | -   | · · ·  | -   |
| M16-De05163  | FS02            | SB01          | 1                 | 30/11/2016           | -    | -    | -    | -   | -    | -  | -  |      |      | -  | -    |      | -  | 0.2    |        | -    | -  | -      |        | -    | 15   |        | 4.5 | < 0.4 | 32 | 19  | - 1    | 26  |
| EM1614608012 | SB02_0.1        | SB02          | 0.1               | 29/11/2016           | 2.6  | 2    | 0.4  | 3.3 | 8.2  | 15 | 6  | 2 <  | 1 <1 | <1 | <1 < | 1 9  | 58 | 0.32   | 15   1 | 3 25 | 46 | 35 3   | 62 62  | 2.69 | 21.7 | 8190   | -   | -     | -  | -   | 15,500 | -   |
| EM1614608014 | SB02_1.0        | SB02          | 1                 | 29/11/2016           | 6    | 6.9  | 0.5  | 8.8 | 22.2 | <1 | <1 | <1 < | 1 <1 | <1 | <1 < | 1 <1 | 21 | 0.27   | 53 2   | 5 <1 | 5  | 2 <    | 1 10   | 2.63 | 17.7 | 10,600 | -   | -     | -  | -   | 14,100 | -   |
| EM1614608015 | SB03_0.1        | SB03          | 0.1               | 29/11/2016           | 1.4  | <0.2 | <0.2 | 1.3 | 2.9  | 16 | 5  | <1 < | 1 <1 | <1 | <1 < | 1 8  | 68 | 0.12   | 15 9   | 34   | 66 | 57 4   | 6 70   | 2.64 | 7.2  | 3230   | -   | -     | -  | -   | 5500   | -   |
| EM1614608017 | SB03_1.0        | SB03          | 1                 | 29/11/2016           | 6.1  | 9.8  | 0.4  | 5.9 | 22.2 | <1 | <1 | <1 < | 1 <1 | <1 | <1 < | 1 <1 | 24 | 0.16   | 47 2   | 9 1  | 5  | 3      | 2 12   | 2.7  | 15.4 | 17,400 | -   | -     | -  | -   | 21,400 | -   |
| EM1614608028 | SB04_0.15       | SB04          | 0.15              | 30/11/2016           | 5.2  | 5.4  | 0.7  | 14  | 25.3 | <1 | <1 | <1 < | 1 <1 | <1 | <1 < | 1 <1 | 18 | 0.37   | 59 2   | 3 <1 | 4  | 2      | 1 8    | 2.57 | 23.2 | 24,600 | -   | -     | -  | -   | 28,800 | -   |
| EM1614608031 | SB04_2.0        | SB04          | 2                 | 30/11/2016           | 6.3  | 10   | 0.5  | 5.9 | 22.8 | <1 | <1 | <1 < | 1 <1 | <1 | <1 < | 1 <1 | 27 | 0.11   | 41 3   | 2 <1 | 7  | 3      | 2 14   | 2.65 | 16.1 | 12,900 | -   | -     | -  | -   | 17,000 | -   |
| EM1614608044 | FD03            | SB04          | 2                 | 30/11/2016           | -    | -    | -    | -   | -    | -  | -  |      |      | -  | -    |      | -  | 0.08   |        | -    | -  | -      |        | -    | 15.3 | 11,200 | -   | -     | -  | -   | -      | -   |
| M16-De05164  | FS03            | SB04          | 2                 | 30/11/2016           | -    | -    | -    | -   | -    | -  | -  |      |      | -  | -    |      | -  | <0.1   |        | -    | -  | -      |        | -    | 16   | -      | 4.4 | <0.4  | 25 | 14  |        | 13  |
| EM1614608018 | SB05_0.1        | SB05          | 0.1               | 29/11/2016           | 2.7  | 3.1  | 0.2  | 1.2 | 7.2  | <1 | <1 | <1 < | 1 <1 | <1 | <1 < | 1 <1 | 19 | 0.52   | 59 2   | 2 2  | 6  | 4      | 3 9    | 2.61 | 17   | 17,200 | -   | -     | -  | -   | 21,900 | -   |
| EM1614608020 | SB05_1.0        | SB05          | 1                 | 29/11/2016           | 5.2  | 4.2  | 0.2  | 1.9 | 11.4 | <1 | <1 | <1 < | 1 <1 | <1 | <1 < | 1 <1 | 25 | 0.12   | 43 3   | 2 2  | 6  | 4      | 2 12   | 2.7  | 12.8 | 15,600 | -   | -     | -  | -   | 20,600 | -   |
| EM1614608001 | SS01            | SS01          | surface           | 29/11/2016           | 6.6  | 5    | 0.6  | 2   | 14.2 | 7  | 4  | 2 <  | 1 <1 | <1 | <1 < | 1 5  | 36 | 0.68   | 34 2   | 5 12 | 25 | 18   1 | 2 32   | 2.62 | 17.2 | 12,200 | -   | -     | -  | -   | 17,700 | -   |
| EM1614608002 | SS02            | SS02          | surface           | 29/11/2016           | 10.9 | 9    | 0.8  | 2.4 | 23.2 | <1 | <1 | <1 < | 1 <1 | <1 | <1 < | 1 <1 | 19 | 0.5    | 56 2   | 5 2  | 6  | 3      | 2 9    | 2.65 | 15.2 | 19,200 | -   | -     | -  | -   | 23,200 | -   |
| EM1614608003 | SS03            | SS03          | surface           | 29/11/2016           | 16   | 8.1  | 1.1  | 0.5 | 25.6 | 3  | <1 | <1 < | 1 <1 | <1 | <1 < | 1 1  | 19 | 3.12   | 51 2   | 9 5  | 10 | 7      | 6 16   | 2.38 | 30.7 | 15,600 | -   | -     | -  | -   | 19,700 | -   |
| EM1614608004 | SS04            | SS04          | surface           | 29/11/2016           | 14.5 | 5.1  | 0.9  | 0.3 | 20.8 | 2  | <1 | <1 < | 1 <1 | <1 | <1 < | 1 1  | 42 | 0.69   | 39 1   | 3 5  | 29 | 17 .   | 9 35   | 2.65 | 30.4 | 17,700 | -   | -     | -  | -   | 20,000 | -   |
| EM1614608005 | SS05            | SS05          | surface           | 29/11/2016           | 9.7  | 7.1  | 1.1  | 0.7 | 18.6 | 3  | 2  | 2 <  | 1 <1 | <1 | <1 < | 1 2  | 27 | 0.75   | 41 3   | ) 5  | 11 | 6      | 5   18 | 2.5  | 27.9 | 15,600 | -   | -     | -  | -   | 17,000 | -   |
| EM1614608006 | SS06            | SS06          | surface           | 29/11/2016           | 9.4  | 11.7 | 1.1  | 1.2 | 23.4 | 1  | <1 | <1 < | 1 <1 | <1 | <1 < | 1 <1 | 28 | 0.61   | 49 2   | 3 2  | 8  | 5      | 4 13   | 2.65 | 27.3 | 21,700 | -   | -     | -  | -   | 26,200 | -   |
| EM1614608007 | SS07            | SS07          | surface           | 29/11/2016           | 8.3  | 8.2  | 0.7  | 2.8 | 20   | <1 | <1 | <1 < | 1 <1 | <1 | <1 < | 1 <1 | 21 | 0.47   | 57 2   | 2 2  | 7  | 4      | 2 13   | 2.65 | 31   | 18,900 | -   | -     | -  | -   | 21,000 | -   |

Env Stds Comments

#1:Arsenic: HIL assumes 70% oral bioavailability. Site-specific bioavailability maybe important and should be considered where appropriate (refer Shedule B7).

#2:In the absence of a guideline value for total chromium, chromium VI value adopted

#3:Lead: HILs A,B,C based on blood lead models (IEUBK & HIL D on adult lead model for where 50% bioavailability considered. Site-specific bioavailability should be considered where appropriate.

#4:Elemental mercury: HIL does not address elemental mercury. a site specific assessment should be considered if elemental mercury is present, or suspected to be present. #5 On-site sample location therefore only screened against commercial / industrial criteria

#### Appendix B Table A Soil and sediment analytical results

|                                                                          |                  |           |         |                     |                                     |                                          |                                 |                                  |                                                  |                                                 |                               |                                |                                       |                          |                                 |                                     |                                            |                                      |                                             | PFA                                   | ۱S                            |                                |                        |                        |
|--------------------------------------------------------------------------|------------------|-----------|---------|---------------------|-------------------------------------|------------------------------------------|---------------------------------|----------------------------------|--------------------------------------------------|-------------------------------------------------|-------------------------------|--------------------------------|---------------------------------------|--------------------------|---------------------------------|-------------------------------------|--------------------------------------------|--------------------------------------|---------------------------------------------|---------------------------------------|-------------------------------|--------------------------------|------------------------|------------------------|
|                                                                          | Mercury          | Nickel    | Silicon | Zinc                | Perfluorodecanesulfonic acid (PFDS) | PFHxS and PFOS (Sum of Total) - Lab Calc | 4:2 Fluorotelomer sulfonic acid | 10:2 Fluorotelomer sulfonic acid | . N-Ethyl perfluorooctane sulfonamidoacetic acid | N-Methyl perfluorooctane sulfonamidoacetic acid | Perfluorobutane sulfonic acid | Perfluoroheptane sulfonic acid | Perfluorohexane sulfonic acid (PFHxS) | Perfluor opentanoic acid | 8.2 Fluorotelomer sulfonic acid | N-Ethyl perfluorooctane sulfonamide | N-Ethyl perfluorooctane sulfonamidoethanol | N-Methyl perfluorooctane sulfonamide | N-Methyl perfluorooctane sulfonamidoethanol | 6.2 Fluorotelomer Sulfonate (6:2 FTS) | Perfluorooctanoic acid (PFOA) | Perfluoropentane sulfonic acid | Perfluorobutanoic acid | Perfluorodecanoic acid |
|                                                                          | mg/kg            | mg/kg     | mg/kg   | mg/kg               |                                     |                                          | mg/kg                           | mg/kg                            | mg/kg                                            | mg/kg                                           | mg/kg                         |                                |                                       | mg/kg                    | mg/kg                           | mg/kg                               | mg/kg                                      | mg/kg                                |                                             | mg/kg                                 |                               | mg/kg                          |                        |                        |
| EQL                                                                      | 0.1              | 5         | 1       | 5                   | 0.005                               | 0.0002                                   | 0.0005                          | 0.0005                           | 0.0002                                           | 0.0002                                          | 0.0002                        | 0.0002                         | 0.0002                                | 0.0002                   | 0.0005                          | 0.0005                              | 0.0005                                     | 0.0005                               | 0.0005                                      | 0.0005                                | 0.0002                        | 0.0002                         | 0.001                  | 0.0002                 |
| DER (2017) Interim PFAS Guidelines - Health commercial/industrial        |                  |           |         |                     |                                     | 100                                      |                                 |                                  |                                                  |                                                 |                               |                                |                                       |                          |                                 |                                     |                                            |                                      |                                             |                                       | 1000                          |                                |                        |                        |
| DER (2017) Interim PFAS Guidelines - Health residential                  |                  |           |         |                     |                                     | 4                                        |                                 |                                  |                                                  |                                                 |                               |                                |                                       |                          |                                 |                                     |                                            |                                      |                                             |                                       | 40                            |                                |                        |                        |
| DEE (2016) Draft Management Guidance on PFOS and PFOA - ecological value |                  |           |         |                     |                                     |                                          |                                 |                                  |                                                  |                                                 |                               |                                |                                       |                          |                                 |                                     |                                            |                                      |                                             |                                       | 1                             |                                |                        |                        |
| NEPM 2013 EIL-Commercial/Industrial                                      |                  | 55        |         | 110                 |                                     |                                          |                                 |                                  |                                                  |                                                 |                               |                                |                                       |                          |                                 |                                     |                                            |                                      |                                             |                                       |                               |                                |                        |                        |
| NEPM 2013 EIL-Urban Residential- Public Open Space                       |                  | <u>30</u> |         | <u>70</u><br>400000 |                                     |                                          |                                 |                                  |                                                  |                                                 |                               |                                |                                       |                          |                                 |                                     |                                            |                                      |                                             |                                       |                               |                                |                        |                        |
| NEPM 2013 Table 1A(1) HIL D Comm/Ind                                     | 730 #4           | 6000      |         | 400000              |                                     |                                          |                                 |                                  |                                                  |                                                 |                               |                                |                                       |                          |                                 |                                     |                                            |                                      |                                             |                                       |                               |                                |                        |                        |
| NEPM 2013 Table 1A(1) HIL A Res                                          | 40 <sup>#4</sup> | 400       |         | 7400                |                                     |                                          |                                 |                                  |                                                  |                                                 |                               |                                |                                       |                          |                                 |                                     |                                            |                                      |                                             |                                       |                               |                                |                        |                        |

| SampleCode   | Field_ID        | Location_Code | Sample_Depth_Ran | ge Sampled_Date_Time |      |     |        |    |         |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |         |          |
|--------------|-----------------|---------------|------------------|----------------------|------|-----|--------|----|---------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|---------|----------|
| EM1614608035 | MW01_0.1        | MW01          | 0.1              | 30/11/2016           | -    | -   | 8300   | -  | -       | 1.36     | < 0.0005 | < 0.0005 | < 0.0002 | < 0.0002 | 0.0033   | 0.016    | 0.0466   | 0.003    | 0.0185   | < 0.0005 | < 0.0005 | < 0.0005 | < 0.0005 | 0.0362   | 0.0158   | 0.0036   | < 0.001 | 0.0014   |
| EM1614608037 | MW01_9.0        | MW01          | 9                | 30/11/2016           | -    | -   | 51     | -  | -       | 0.0394   | < 0.0005 | < 0.0005 | < 0.0002 | < 0.0002 | 0.0007   | 0.0003   | 0.0017   | 0.0007   | < 0.0005 | < 0.0005 | < 0.0005 | < 0.0005 | < 0.0005 | 0.0007   | 0.0005   | 0.0006   | <0.001  | < 0.0002 |
| EM1614608038 | MW02_0.1        | MW02          | 0.1              | 30/11/2016           | -    | -   | 17,100 | -  | -       | 0.0026   | < 0.0005 | < 0.0005 | < 0.0002 | < 0.0002 | 0.0005   | < 0.0002 | 0.0018   | < 0.0002 | <0.0005  | < 0.0005 | < 0.0005 | < 0.0005 | < 0.0005 | < 0.0005 | < 0.0002 | 0.0009   | <0.001  | < 0.0002 |
| S16-De23615  | MW02B_10.2-10.3 | MW02          | 10.2-10.3        | 15/12/2016           | <0.1 | 7.5 | -      | 18 | -       | -        | -        | -        | -        | -        | -        | -        | -        | -        | -        | -        | -        | -        | -        | -        | -        | -        | -       | -        |
| EM1614608040 | MW02_13.5       | MW02          | 13.5             | 30/11/2016           | -    | -   | 153    | -  | -       | < 0.0002 | < 0.0005 | < 0.0005 | < 0.0002 | < 0.0002 | < 0.0002 | < 0.0002 | < 0.0002 | < 0.0002 | < 0.0005 | < 0.0005 | < 0.0005 | < 0.0005 | < 0.0005 | < 0.0005 | < 0.0002 | < 0.0002 | < 0.001 | < 0.0002 |
| EM1614608041 | MW03_0.1        | MW03          | 0.1              | 30/11/2016           | -    | -   | 2700   | -  | -       | 0.0163   | < 0.0005 | < 0.0005 | 0.0027   | 0.0038   | < 0.0002 | 0.0002   | 0.002    | 0.0004   | < 0.0005 | < 0.0005 | < 0.0005 | < 0.0005 | < 0.0005 | < 0.0005 | 0.0067   | < 0.0002 | <0.001  | < 0.0002 |
| EM1614608042 | MW03_1.0        | MW03          | 1                | 30/11/2016           | -    | -   | 150    | -  | -       | 0.0016   | <0.0005  | < 0.0005 | < 0.0002 | < 0.0002 | 0.0006   | < 0.0002 | 0.0007   | 0.0002   | < 0.0005 | < 0.0005 | <0.0005  | <0.0005  | < 0.0005 | < 0.0005 | 0.0005   | 0.0002   | < 0.001 | < 0.0002 |
| S16-De23616  | MW03B_13.8-13.9 | MW03          | 13.8-13.9        | 15/12/2016           | <0.1 | 7.8 | -      | 21 | -       | -        | -        | -        | -        | -        | -        | -        | -        | -        | -        | -        | -        | -        | -        | -        | -        | -        | -       | -        |
| EM1614608021 | SB01_0.1        | SB01          | 0.1              | 30/11/2016           | -    | -   | 4910   | -  | -       | 0.362    | < 0.0005 | < 0.0005 | < 0.0002 | < 0.0002 | 0.0046   | 0.007    | 0.0665   | 0.0043   | 0.0017   | < 0.0005 | <0.0005  | <0.0005  | < 0.0005 | 0.013    | 0.0079   | 0.0045   | < 0.001 | 0.0004   |
| EM1614608023 | SB01_1.0        | SB01          | 1                | 30/11/2016           | -    | -   | 12,500 | -  | -       | 0.0105   | < 0.0005 | < 0.0005 | < 0.0002 | < 0.0002 | 0.0045   | < 0.0002 | 0.0078   | 0.0038   | <0.0005  | < 0.0005 | < 0.0005 | < 0.0005 | < 0.0005 | 0.0008   | 0.0006   | 0.003    | <0.001  | < 0.0002 |
| EM1614608043 | FD02            | SB01          | 1                | 30/11/2016           | -    | -   | 9870   | -  | -       | 0.0315   | <0.0005  | < 0.0005 | < 0.0002 | < 0.0002 | 0.006    | 0.0003   | 0.0192   | 0.0051   | < 0.0005 | < 0.0005 | < 0.0005 | < 0.0005 | < 0.0005 | 0.0018   | 0.0009   | 0.0041   | < 0.001 | < 0.0002 |
| M16-De05163  | FS02            | SB01          | 1                | 30/11/2016           | <0.1 | 14  | -      | 46 | < 0.005 | -        | < 0.005  | -        | -        | -        | < 0.005  | -        | 0.011    | < 0.005  | <0.005   | <0.01    | -        | < 0.01   | -        | < 0.01   | < 0.005  | -        | < 0.005 | < 0.005  |
| EM1614608012 | SB02_0.1        | SB02          | 0.1              | 29/11/2016           | -    | -   | 175    | -  | -       | 12.8 #5  | 0.0234   | 0.0126   | < 0.0002 | < 0.0002 | 0.343    | 0.309    | 2.15     | 0.165    | 0.154    | < 0.0005 | < 0.0005 | < 0.0005 | < 0.0005 | 1.29     | 0.232    | 0.306    | 0.06    | 0.0017   |
| EM1614608014 | SB02_1.0        | SB02          | 1                | 29/11/2016           | -    | -   | 100    | -  | -       | 0.29     | 0.008    | < 0.0005 | < 0.0002 | < 0.0002 | 0.0879   | 0.0024   | 0.212    | 0.036    | 0.0011   | < 0.0005 | < 0.0005 | <0.0005  | < 0.0005 | 0.0646   | 0.0113   | 0.066    | <0.001  | < 0.0002 |
| EM1614608015 | SB03_0.1        | SB03          | 0.1              | 29/11/2016           | -    | -   | 734    | -  | -       | 0.462    | < 0.0005 | 0.0013   | < 0.0002 | < 0.0002 | 0.0007   | 0.0013   | 0.0078   | 0.0006   | 0.0074   | < 0.0005 | < 0.0005 | < 0.0005 | < 0.0005 | 0.0076   | 0.0022   | 0.0008   | <0.001  | 0.0004   |
| EM1614608017 | SB03_1.0        | SB03          | 1                | 29/11/2016           | -    | -   | 44     | -  | -       | 0.206    | < 0.0005 | < 0.0005 | < 0.0002 | < 0.0002 | 0.048    | 0.0011   | 0.169    | 0.0395   | <0.0005  | < 0.0005 | < 0.0005 | < 0.0005 | < 0.0005 | 0.0157   | 0.0148   | 0.0415   | < 0.001 | < 0.0002 |
| EM1614608028 | SB04_0.15       | SB04          | 0.15             | 30/11/2016           | -    | -   | 36,900 | -  | -       | 0.749    | < 0.0005 | < 0.0005 | < 0.0002 | < 0.0002 | 0.0043   | 0.0185   | 0.0578   | 0.0047   | 0.0044   | < 0.0005 | < 0.0005 | < 0.0005 | < 0.0005 | 0.0537   | 0.0143   | 0.0045   | < 0.001 | < 0.0002 |
| EM1614608031 | SB04_2.0        | SB04          | 2                | 30/11/2016           | -    | -   | 24     | -  | -       | 0.0147   | < 0.0005 | < 0.0005 | < 0.0002 | < 0.0002 | 0.0084   | 0.0003   | 0.0019   | 0.0037   | <0.0005  | < 0.0005 | < 0.0005 | < 0.0005 | < 0.0005 | 0.001    | 0.0002   | 0.0013   | < 0.001 | < 0.0002 |
| EM1614608044 | FD03            | SB04          | 2                | 30/11/2016           | -    | -   | 33     | -  | -       | 0.0011   | < 0.0005 | < 0.0005 | < 0.0002 | < 0.0002 | 0.014    | < 0.0002 | 0.0003   | 0.0064   | < 0.0005 | < 0.0005 | < 0.0005 | < 0.0005 | < 0.0005 | < 0.0005 | < 0.0002 | 0.0088   | < 0.001 | < 0.0002 |
| M16-De05164  | FS03            | SB04          | 2                | 30/11/2016           | <0.1 | 14  | -      | 41 | <0.005  | -        | <0.005   | -        | -        | -        | 0.012    | -        | < 0.005  | < 0.005  | <0.005   | <0.01    | -        | <0.01    | -        | <0.01    | < 0.005  | -        | < 0.005 | < 0.005  |
| EM1614608018 | SB05_0.1        | SB05          | 0.1              | 29/11/2016           | -    | -   | 20,600 | -  |         | 0.0047   | < 0.0005 | < 0.0005 | < 0.0002 | < 0.0002 | < 0.0002 | < 0.0002 | 0.0009   | 0.0005   | <0.0005  | <0.0005  | < 0.0005 | <0.0005  | <0.0005  | 0.0006   | 0.0035   | < 0.0002 | < 0.001 | < 0.0002 |
| EM1614608020 | SB05_1.0        | SB05          | 1                | 29/11/2016           | -    | -   | 83     | -  | -       | < 0.0002 | < 0.0005 | < 0.0005 | < 0.0002 | < 0.0002 | < 0.0002 | < 0.0002 | < 0.0002 | < 0.0002 | < 0.0005 | < 0.0005 | < 0.0005 | < 0.0005 | < 0.0005 | < 0.0005 | < 0.0002 | < 0.0002 | < 0.001 | < 0.0002 |
| EM1614608001 | SS01            | SS01          | surface          | 29/11/2016           | -    | -   | 4680   | -  | -       | 0.302    | < 0.0005 | 0.0026   | < 0.0002 | < 0.0002 | 0.0003   | 0.0006   | 0.0053   | 0.0015   | 0.0043   | < 0.0005 | < 0.0005 | < 0.0005 | < 0.0005 | 0.0164   | 0.0022   | 0.0003   | < 0.001 | 0.0011   |
| EM1614608002 | SS02            | SS02          | surface          | 29/11/2016           | -    | -   | 7200   | -  | -       | 0.284    | <0.0005  | 0.0325   | < 0.0002 | < 0.0002 | 0.0004   | 0.0008   | 0.0065   | 0.0014   | 0.0244   | < 0.0005 | < 0.0005 | < 0.0005 | < 0.0005 | 0.0364   | 0.0031   | 0.0006   | < 0.001 | 0.0032   |
| EM1614608003 | SS03            | SS03          | surface          | 29/11/2016           | -    | -   | 2170   | -  |         | 0.0098   | <0.0005  | < 0.0005 | < 0.0002 | < 0.0002 | < 0.0002 | < 0.0002 | 0.0017   | 0.0004   | <0.0005  | <0.0005  | < 0.0005 | <0.0005  | < 0.0005 | <0.0005  | < 0.0002 | <0.0002  | < 0.001 | < 0.0002 |
| EM1614608004 | SS04            | SS04          | surface          | 29/11/2016           | -    | -   | 1700   | -  | -       | 0.0306   | < 0.0005 | < 0.0005 | < 0.0002 | < 0.0002 | < 0.0002 | 0.0003   | 0.0012   | < 0.0002 | < 0.0005 | <0.0005  | < 0.0005 | < 0.0005 | < 0.0005 | 0.0013   | 0.0003   | < 0.0002 | < 0.001 | < 0.0002 |
| EM1614608005 | SS05            | SS05          | surface          | 29/11/2016           | -    | -   | 3010   | -  | -       | 0.043    | <0.0005  | < 0.0005 | < 0.0002 | < 0.0002 | < 0.0002 | 0.0004   | 0.0034   | 0.0014   | 0.0007   | <0.0005  | <0.0005  | <0.0005  | <0.0005  | 0.0044   | 0.0032   | 0.0002   | <0.001  | < 0.0002 |
| EM1614608006 | SS06            | SS06          | surface          | 29/11/2016           | -    | -   | 8080   | -  | -       | 0.0329   | <0.0005  | < 0.0005 | <0.0002  | < 0.0002 | < 0.0002 | < 0.0002 | 0.0004   | 0.0002   | 0.0007   | <0.0005  | < 0.0005 | <0.0005  | < 0.0005 | 0.0012   | 0.0002   | < 0.0002 | < 0.001 | < 0.0002 |
| EM1614608007 | SS07            | SS07          | surface          | 29/11/2016           | -    | -   | 5700   | -  | -       | 0.025    | <0.0005  | <0.0005  | <0.0002  | <0.0002  | < 0.0002 | < 0.0002 | < 0.0002 | <0.0002  | < 0.0005 | <0.0005  | <0.0005  | <0.0005  | <0.0005  | <0.0005  | < 0.0002 | <0.0002  | <0.001  | < 0.0002 |
|              | 1               | 1             | 1                | 1                    |      | 1   |        |    |         |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |         |          |

Env Stds Comments

#1:Arsenic: HL assumes 70% oral bioavailability. Site-specific bioavailability maybe important and should be considered where appropriat #2:In the absence of a guideline value for total chromium, chromium VI value adopted

#3:Lead: HILs A,B,C based on blood lead models (IEUBK & HIL D on adult lead model for where 50% bioavailability considered. Site-specif #4:Elemental mercury: HIL does not address elemental mercury. a site specific assessment should be considered if elemental mercury is #5 On-site sample location therefore only screened against commercial / industrial criteria

GHD

#### Appendix B Table A Soil and sediment analytical results

|                                                                          |                               |                          |                         |                                |                        |                                         |                                              |                                     |                           |                          |                     |                                                                                             | Major lons             |
|--------------------------------------------------------------------------|-------------------------------|--------------------------|-------------------------|--------------------------------|------------------------|-----------------------------------------|----------------------------------------------|-------------------------------------|---------------------------|--------------------------|---------------------|---------------------------------------------------------------------------------------------|------------------------|
|                                                                          |                               | 1                        | 1                       | 1                              | 1                      |                                         |                                              |                                     |                           |                          |                     |                                                                                             | IVIAJUI IUIIS          |
|                                                                          | berfluorodecane sulfonic acid | Perfluorododecanoic acid | Perfluoroheptanoic acid | Berfluorohexanoic acid (PFHxA) | Perfluorononanoic acid | By Perfluorooctane sulfonic acid (PFOS) | B<br>B<br>Perfluorooctane sulfonamide (FOSA) | berfluorotetradecanoic acid<br>by/b | berfluorotridecanoic acid | berfluoroundecanoic acid | BFAS (Sum of Total) | B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B | botassium<br>botassium |
| EQL                                                                      | 0.0002                        | 0.0002                   | 0.0002                  | 0.0002                         | 0.0002                 | 0.0002                                  | 0.0002                                       | 0.0005                              | 0.0002                    | 0.0002                   | 0.0002              | 0.0002                                                                                      | 10                     |
| DER (2017) Interim PFAS Guidelines - Health commercial/industrial        | 0.0002                        | 0.0002                   | 0.0002                  | 0.0002                         | 0.0002                 | 0.0002                                  | 0.0002                                       | 0.0000                              | 0.0002                    | 0.0002                   | 0.0002              | 0.0002                                                                                      | 10                     |
| DER (2017) Interim PFAS Guidelines - Health residential                  |                               |                          |                         |                                |                        |                                         |                                              |                                     |                           |                          |                     |                                                                                             |                        |
| DEE (2016) Draft Management Guidance on PFOS and PFOA - ecological value |                               |                          |                         |                                |                        | 6.6                                     |                                              |                                     |                           |                          |                     |                                                                                             |                        |
| NEPM 2013 EIL-Commercial/Industrial                                      |                               |                          |                         |                                |                        |                                         |                                              |                                     |                           |                          |                     |                                                                                             |                        |
| NEPM 2013 EIL-Urban Residential- Public Open Space                       |                               |                          |                         | 1                              |                        |                                         |                                              |                                     |                           |                          |                     |                                                                                             |                        |
| NEPM 2013 Table 1A(1) HIL D Comm/Ind                                     |                               |                          |                         |                                |                        |                                         |                                              |                                     |                           |                          |                     |                                                                                             |                        |
| NEPM 2013 Table 1A(1) HIL A Res                                          |                               |                          |                         |                                |                        |                                         |                                              |                                     |                           |                          |                     |                                                                                             |                        |

| SampleCode   | Field_ID        | Location_Code | Sample_Depth_Range | Sampled_Date_Time |          |          |          |          |          |          |          |          |          |          |          |        |
|--------------|-----------------|---------------|--------------------|-------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|--------|
| EM1614608035 | MW01_0.1        | MW01          | 0.1                | 30/11/2016        | 0.0018   | < 0.0002 | 0.0028   | 0.0202   | 0.0005   | 1.31     | 0.0014   | < 0.0005 | < 0.0002 | < 0.0002 | 1.48     | 1.46   |
| EM1614608037 | MW01_9.0        | MW01          | 9                  | 30/11/2016        | < 0.0002 | < 0.0002 | < 0.0002 | 0.0017   | < 0.0002 | 0.0377   | < 0.0002 | <0.0005  | < 0.0002 | < 0.0002 | 0.0446   | 0.043  |
| EM1614608038 | MW02_0.1        | MW02          | 0.1                | 30/11/2016        | < 0.0002 | < 0.0002 | < 0.0002 | 0.0005   | < 0.0002 | 0.0008   | < 0.0002 | < 0.0005 | < 0.0002 | < 0.0002 | 0.0045   | 0.003  |
| S16-De23615  | MW02B_10.2-10.3 | MW02          | 10.2-10.3          | 15/12/2016        | -        | -        | -        | -        | -        | -        | -        | -        | -        | -        | -        | -      |
| EM1614608040 | MW02_13.5       | MW02          | 13.5               | 30/11/2016        | < 0.0002 | < 0.0002 | < 0.0002 | < 0.0002 | < 0.0002 | < 0.0002 | < 0.0002 | < 0.0005 | < 0.0002 | < 0.0002 | < 0.0002 | < 0.00 |
| EM1614608041 | MW03_0.1        | MW03          | 0.1                | 30/11/2016        | < 0.0002 | 0.0003   | 0.0013   | 0.001    | 0.0004   | 0.0143   | 0.0016   | <0.0005  | < 0.0002 | < 0.0002 | 0.0347   | 0.025  |
| EM1614608042 | MW03_1.0        | MW03          | 1                  | 30/11/2016        | < 0.0002 | < 0.0002 | 0.0003   | 0.0019   | < 0.0002 | 0.0009   | < 0.0002 | <0.0005  | < 0.0002 | < 0.0002 | 0.0053   | 0.005  |
| S16-De23616  | MW03B_13.8-13.9 | MW03          | 13.8-13.9          | 15/12/2016        | -        | -        | -        | -        | -        | -        | -        | -        | -        | -        | -        | -      |
| EM1614608021 | SB01_0.1        | SB01          | 0.1                | 30/11/2016        | < 0.0002 | < 0.0002 | 0.0019   | 0.0186   | < 0.0002 | 0.295    | 0.0004   | <0.0005  | < 0.0002 | < 0.0002 | 0.426    | 0.41   |
| EM1614608023 | SB01_1.0        | SB01          | 1                  | 30/11/2016        | < 0.0002 | < 0.0002 | 0.0006   | 0.0161   | < 0.0002 | 0.0027   | < 0.0002 | < 0.0005 | < 0.0002 | < 0.0002 | 0.0399   | 0.036  |
| EM1614608043 | FD02            | SB01          | 1                  | 30/11/2016        | < 0.0002 | < 0.0002 | 0.0011   | 0.0233   | <0.0002  | 0.0123   | < 0.0002 | <0.0005  | < 0.0002 | < 0.0002 | 0.0741   | 0.069  |
| M16-De05163  | FS02            | SB01          | 1                  | 30/11/2016        | -        | < 0.005  | <0.005   | 0.015    | < 0.005  | 0.012    | < 0.01   | < 0.005  | < 0.005  | < 0.005  | -        | -      |
| EM1614608012 | SB02_0.1        | SB02          | 0.1                | 29/11/2016        | 0.0068   | 0.0005   | 0.0407   | 0.608    | 0.0005   | 10.7 #5  | 0.0156   | <0.0005  | < 0.0002 | < 0.0002 | 16.4     | 15.7   |
| EM1614608014 | SB02_1.0        | SB02          | 1                  | 29/11/2016        | <0.0002  | < 0.0002 | 0.0148   | 0.146    | < 0.0002 | 0.0778   | < 0.0002 | <0.0005  | < 0.0002 | < 0.0002 | 0.728    | 0.65   |
| EM1614608015 | SB03_0.1        | SB03          | 0.1                | 29/11/2016        | 0.0034   | < 0.0002 | 0.0005   | 0.0041   | < 0.0002 | 0.454    | 0.0031   | <0.0005  | < 0.0002 | 0.0012   | 0.496    | 0.48   |
| EM1614608017 | SB03_1.0        | SB03          | 1                  | 29/11/2016        | 0.0004   | < 0.0002 | 0.0267   | 0.141    | < 0.0002 | 0.0371   | < 0.0002 | <0.0005  | < 0.0002 | < 0.0002 | 0.535    | 0.49   |
| EM1614608028 | SB04_0.15       | SB04          | 0.15               | 30/11/2016        | 0.0003   | < 0.0002 | 0.0025   | 0.0192   | < 0.0002 | 0.691    | 0.0004   | <0.0005  | < 0.0002 | < 0.0002 | 0.876    | 0.85   |
| EM1614608031 | SB04_2.0        | SB04          | 2                  | 30/11/2016        | < 0.0002 | < 0.0002 | < 0.0002 | 0.0125   | < 0.0002 | 0.0128   | < 0.0002 | <0.0005  | < 0.0002 | < 0.0002 | 0.0421   | 0.040  |
| EM1614608044 | FD03            | SB04          | 2                  | 30/11/2016        | <0.0002  | < 0.0002 | 0.0004   | 0.0394   | <0.0002  | 0.0008   | < 0.0002 | <0.0005  | < 0.0002 | <0.0002  | 0.0701   | 0.061  |
| M16-De05164  | FS03            | SB04          | 2                  | 30/11/2016        | -        | <0.005   | < 0.005  | 0.033    | <0.005   | < 0.005  | < 0.01   | < 0.005  | <0.005   | < 0.005  | -        | -      |
| EM1614608018 | SB05_0.1        | SB05          | 0.1                | 29/11/2016        | < 0.0002 | < 0.0002 | 0.0013   | 0.0015   | < 0.0002 | 0.0038   | < 0.0002 | <0.0005  | < 0.0002 | <0.0002  | 0.0121   | 0.012  |
| EM1614608020 | SB05_1.0        | SB05          | 1                  | 29/11/2016        | < 0.0002 | < 0.0002 | < 0.0002 | < 0.0002 | <0.0002  | < 0.0002 | < 0.0002 | < 0.0005 | < 0.0002 | <0.0002  | < 0.0002 | < 0.00 |
| EM1614608001 | SS01            | SS01          | surface            | 29/11/2016        | 0.0014   | < 0.0002 | 0.0011   | 0.0038   | 0.0008   | 0.297    | 0.0009   | <0.0005  | < 0.0002 | <0.0002  | 0.34     | 0.33   |
| EM1614608002 | SS02            | SS02          | surface            | 29/11/2016        | 0.0072   | 0.002    | 0.0008   | 0.0063   | 0.0002   | 0.277    | 0.0076   | <0.0005  | < 0.0002 | 0.0014   | 0.412    | 0.35   |
| EM1614608003 | SS03            | SS03          | surface            | 29/11/2016        | < 0.0002 | < 0.0002 | < 0.0002 | 0.001    | <0.0002  | 0.0081   | < 0.0002 | <0.0005  | < 0.0002 | <0.0002  | 0.0112   | 0.011  |
| EM1614608004 | SS04            | SS04          | surface            | 29/11/2016        | < 0.0002 | < 0.0002 | < 0.0002 | 0.0004   | <0.0002  | 0.0294   | < 0.0002 | <0.0005  | < 0.0002 | <0.0002  | 0.0329   | 0.032  |
| EM1614608005 | SS05            | SS05          | surface            | 29/11/2016        | 0.0009   | < 0.0002 | 0.0019   | 0.0031   | 0.0004   | 0.0396   | 0.0006   | <0.0005  | < 0.0002 | <0.0002  | 0.0602   | 0.057  |
| EM1614608006 | SS06            | SS06          | surface            | 29/11/2016        | 0.0002   | < 0.0002 | < 0.0002 | 0.0003   | <0.0002  | 0.0325   | 0.0005   | <0.0005  | < 0.0002 | <0.0002  | 0.0362   | 0.035  |
| EM1614608007 | SS07            | SS07          | surface            | 29/11/2016        | < 0.0002 | < 0.0002 | < 0.0002 | < 0.0002 | < 0.0002 | 0.025    | < 0.0002 | < 0.0005 | < 0.0002 | < 0.0002 | 0.025    | 0.02   |

Env Stds Comments

#1:Arsenic: HL assumes 70% oral bioavailability. Site-specific bioavailability maybe important and should be considered where appropriat #2:In the absence of a guideline value for total chromium, chromium VI value adopted

#3:Lead: HILS A,B,C based on blood lead models (IEUBK & HIL D on adult lead model for where 50% bioavailability considered. Site-specif #4:Elemental mercury: HIL does not address elemental mercury. a site specific assessment should be considered if elemental mercury is j #5 On-site sample location therefore only screened against commercial / industrial criteria

| 460  |
|------|
| <10  |
| 1160 |
| -    |
| <10  |
| 180  |
| <10  |
| -    |
| 360  |
| 790  |
| 600  |
| 3000 |
| 30   |
| <10  |
| 50   |
| <10  |
| 2400 |
| <10  |
| <10  |
| 2600 |
| 1260 |
| <10  |
| 310  |
| 410  |
| 140  |
| 110  |
| 190  |
| 470  |
| 320  |
|      |

GHD

# Appendix B Table B ASLP analytical results

|                                             |                                     |                                          |                                 |                                  |                                                |                                                 |                               |                                |                                       |                         |                                 |                                     |                                            |                                      | PF                                          | AS                                    |                               |                                |                        |                        |                          |                         |                                |                         |                                      |                                    |                             |                           |                          |                     |                                  |
|---------------------------------------------|-------------------------------------|------------------------------------------|---------------------------------|----------------------------------|------------------------------------------------|-------------------------------------------------|-------------------------------|--------------------------------|---------------------------------------|-------------------------|---------------------------------|-------------------------------------|--------------------------------------------|--------------------------------------|---------------------------------------------|---------------------------------------|-------------------------------|--------------------------------|------------------------|------------------------|--------------------------|-------------------------|--------------------------------|-------------------------|--------------------------------------|------------------------------------|-----------------------------|---------------------------|--------------------------|---------------------|----------------------------------|
|                                             | Perfluorodecanesulfonic acid (PFDS) | PFHxS and PFOS (Sum of Total) - Lab Calc | 4:2 Fluorotelomer sulfonic acid | 10:2 Fluorotelomer sulfonic acid | N-Ethyl perfluorooctane sulfonamidoacetic acid | N-Methyl perfluorooctane sulfonamidoacetic acid | Perfluorobutane sulfonic acid | Perfluoroheptane sulfonic acid | Perfluorohexane sulfonic acid (PFHxS) | Perfluoropentanoic acid | 8:2 Fluorotelomer sulfonic acid | N-Ethyl perfluorooctane sulfonamide | N-Ethyl perfluorooctane sulfonamidoethanol | N-Methyl perfluorooctane sulfonamide | N-Methyl perfluorooctane sulfonamidoethanol | 6:2 Fluorotelomer Sulfonate (6:2 FTS) | Perfluorooctanoic acid (PFOA) | Perfluoropentane sulfonic acid | Perfluorobutanoic acid | Perfluorodecanoic acid | Perfluorododecanoic acid | Perfluoroheptanoic acid | Perfluorohexanoic acid (PFHxA) | Perfiluorononanoic acid | Perfluorooctane sulfonic acid (PFOS) | Perfluorooctane sulfonamide (FOSA) | Perfluorotetradecanoic acid | Perfluorotridecanoic acid | Perfluoroundecanoic acid | PFAS (Sum of Total) | PFAS (Sum of Total)(WA DER List) |
|                                             | µg/L                                | μg/L                                     |                                 | µg/L                             | µg/L                                           | µg/L                                            |                               |                                | µg/L                                  | µg/L                    | µg/L                            | µg/L                                | µg/L                                       | µg/L                                 | µg/L                                        | µg/L                                  | µg/L                          |                                | µg/L                   | µg/L                   |                          | µg/L                    | µg/L                           | µg/L                    | µg/L                                 |                                    | µg/L                        |                           |                          | µg/L                |                                  |
| EQL<br>WA DER (2017) Drinking water quality | 0.02                                | 0.01                                     | 0.05                            | 0.05                             | 0.02                                           | 0.02                                            | 0.02                          | 0.02                           | 0.02                                  | 0.02                    | 0.05                            | 0.05                                | 0.05                                       | 0.05                                 | 0.05                                        | 0.05                                  | 0.01<br>50 <sup>#1</sup>      | 0.02                           | 0.1                    | 0.02                   | 0.02                     | 0.02                    | 0.02                           | 0.02                    | 0.01                                 | 0.02                               | 0.05                        | 0.02                      | 0.02                     | 0.01                | 0.01                             |
| WA DER (2017) Ecolgocial freshwater         | -                                   | 0.0023 <sup>#1</sup>                     |                                 |                                  |                                                |                                                 |                               |                                |                                       |                         |                                 |                                     |                                            |                                      |                                             |                                       | 50 <sup>**</sup>              |                                |                        |                        |                          |                         |                                |                         |                                      |                                    |                             |                           |                          |                     | _                                |
| WA DER (2017) Recreational water            |                                     | <u>50<sup>#1</sup></u>                   |                                 |                                  |                                                |                                                 |                               |                                |                                       |                         |                                 |                                     |                                            |                                      |                                             |                                       | <u>500<sup>#1</sup></u>       |                                |                        |                        |                          |                         |                                |                         |                                      |                                    |                             |                           |                          |                     | _                                |
|                                             |                                     | <u> </u>                                 |                                 |                                  |                                                |                                                 |                               |                                |                                       |                         |                                 |                                     |                                            |                                      |                                             |                                       | 000                           |                                |                        |                        |                          |                         |                                |                         |                                      |                                    |                             |                           |                          |                     |                                  |

SampleCode Field\_ID Location\_Code SampleDepth Sampled\_Date Matrix\_Description
(m)

|              |           |      | (m)  |           |      |        |             |        |        |        |        |        |        |       |        |        |        |        |        |        |        |        |        |      |        |        |        |        |        |      |        |        |          |         |        |      |
|--------------|-----------|------|------|-----------|------|--------|-------------|--------|--------|--------|--------|--------|--------|-------|--------|--------|--------|--------|--------|--------|--------|--------|--------|------|--------|--------|--------|--------|--------|------|--------|--------|----------|---------|--------|------|
| ES1701175001 | MW01_0.1  | MW01 | 0.1  | 30-Nov-16 | ASLP | 0.07   | <u>137</u>  | < 0.05 | < 0.05 | <0.02  | < 0.02 | 0.38   | 1.43   | 3.49  | 0.29   | 1.76   | < 0.05 | < 0.05 | <0.05  | < 0.05 | 1.54   | 0.77   | 0.26   | <0.1 | 0.05   | < 0.02 | 0.12   | 0.96   | 0.07   | 134  | 0.12   | < 0.05 | < 0.02   | < 0.02  | 145    | 143  |
| ES1701175002 | MW01_9.0  | MW01 | 9    | 30-Nov-16 | ASLP | < 0.02 | 3.43        | < 0.05 | < 0.05 | <0.02  | < 0.02 | 0.15   | 0.04   | 0.27  | 0.11   | 0.06   | < 0.05 | < 0.05 | < 0.05 | < 0.05 | 0.09   | 0.04   | 0.06   | <0.1 | < 0.02 | < 0.02 | 0.02   | 0.28   | < 0.02 | 3.16 | < 0.02 | < 0.05 | < 0.02 < | <0.02 4 | 4.28   | 4.18 |
| ES1701175003 | MW02_0.1  | MW02 | 0.1  | 30-Nov-16 | ASLP | < 0.02 | 0.18        | < 0.05 | < 0.05 | < 0.02 | < 0.02 | 0.02   | < 0.02 | 0.12  | < 0.02 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | <0.01  | 0.02   | <0.1 | < 0.02 | < 0.02 | < 0.02 | 0.02   | < 0.02 | 0.06 | < 0.02 | < 0.05 | < 0.02 < | <0.02   | J.24 / | 0.22 |
| ES1701175004 | MW03_0.1  | MW03 | 0.1  | 30-Nov-16 | ASLP | < 0.02 | 0.39        | < 0.05 | < 0.05 | < 0.02 | < 0.02 | < 0.02 | < 0.02 | 0.08  | 0.03   | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | 0.16   | < 0.02 | <0.1 | < 0.02 | < 0.02 | 0.03   | 0.04   | < 0.02 | 0.31 | < 0.02 | < 0.05 | < 0.02 < | <0.02 ( | J.65 / | 0.65 |
| ES1701175005 | SB01_0.1  | SB01 | 0.1  | 30-Nov-16 | ASLP | < 0.02 | 17          | < 0.05 | < 0.05 | < 0.02 | < 0.02 | 0.43   | 0.35   | 4.29  | 0.35   | 0.08   | < 0.05 | < 0.05 | < 0.05 | < 0.05 | 0.45   | 0.32   | 0.35   | <0.1 | < 0.02 | < 0.02 | 0.1    | 0.8    | < 0.02 | 12.7 | < 0.02 | < 0.05 | < 0.02 < | < 0.02  | 20.2   | 19.5 |
| ES1701175006 | SB02_0.1  | SB02 | 0.1  | 29-Nov-16 | ASLP | <0.2   | <u>756</u>  | 0.54   | <0.5   | <0.2   | <0.2   | 11.3   | 15.8   | 84.7  | 5.21   | 8.63   | <0.5   | <0.5   | <0.5   | <0.5   | 45.9   | 9.88   | 9.11   | 4.4  | <0.2   | <0.2   | 2.31   | 18.2   | <0.2   | 671  | 2.01   | <0.5   | <0.2     | <0.2    | 889    | 862  |
| ES1701175007 | SB03_0.1  | SB03 | 0.1  | 29-Nov-16 | ASLP | 0.11   | 17          | < 0.05 | < 0.05 | < 0.02 | < 0.02 | 0.05   | 0.06   | 0.44  | 0.06   | 0.15   | < 0.05 | < 0.05 | < 0.05 | < 0.05 | 0.12   | 0.09   | 0.04   | <0.1 | < 0.02 | < 0.02 | 0.03   | 0.19   | < 0.02 | 16.6 | 0.13   | < 0.05 | < 0.02 < | < 0.02  | 18.1   | 17.7 |
| ES1701175008 | SB03_1.0  | SB03 | 1    | 29-Nov-16 | ASLP | < 0.02 | 6.05        | < 0.05 | < 0.05 | < 0.02 | < 0.02 | 4.09   | 0.03   | 5.13  | 3.14   | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | 0.19   | 0.29   | 2.28   | 0.8  | < 0.02 | < 0.02 | 0.88   | 6.02   | < 0.02 | 0.92 | < 0.02 | < 0.05 | < 0.02 < | < 0.02  | 23.8   | 21.5 |
| ES1701175009 | SB04_0.15 | SB04 | 0.15 | 30-Nov-16 | ASLP | < 0.02 | <u>51.7</u> | < 0.05 | < 0.05 | <0.02  | < 0.02 | 0.43   | 1.78   | 6.02  | 0.21   | 0.17   | < 0.05 | < 0.05 | < 0.05 | < 0.05 | 2.72   | 0.8    | 0.41   | <0.1 | < 0.02 | < 0.02 | 0.15   | 0.62   | < 0.02 | 45.7 | < 0.02 | < 0.05 | < 0.02   | <0.02   | 59 5   | 56.8 |
| ES1701175010 | SB05_0.1  | SB05 | 0.1  | 29-Nov-16 | ASLP | < 0.02 | 0.18        | < 0.05 | < 0.05 | < 0.02 | < 0.02 | < 0.02 | < 0.02 | 0.05  | < 0.02 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | 0.09   | < 0.02 | <0.1 | < 0.02 | < 0.02 | < 0.02 | < 0.02 | < 0.02 | 0.13 | < 0.02 | < 0.05 | <0.02    | <0.02   | J.27 / | 0.27 |
| ES1701175011 | SS01      | SS01 |      | 29-Nov-16 | ASLP | < 0.02 | 16.2        | < 0.05 | < 0.05 | < 0.02 | < 0.02 | 0.07   | 0.05   | 0.31  | 0.09   | 0.28   | < 0.05 | < 0.05 | < 0.05 | < 0.05 | 0.31   | 0.12   | 0.04   | <0.1 | 0.04   | < 0.02 | 0.03   | 0.16   | 0.05   | 15.9 | 0.06   | < 0.05 | < 0.02 < | < 0.02  | 17.5   | 17.3 |
| ES1701175012 | SS02      | SS02 |      | 29-Nov-16 | ASLP | 0.26   | 29          | < 0.05 | 0.3    | < 0.02 | < 0.02 | 0.04   | 0.05   | 0.26  | 0.11   | 1.26   | < 0.05 | < 0.05 | < 0.05 | < 0.05 | 0.54   | 0.11   | 0.02   | <0   | 0.3    | 0.04   | 0.04   | 0.2    | < 0.02 | 28.7 | 0.59   | < 0.05 | <0.02    | 0.11    | 32.9   | 31.3 |
| ES1701175013 | SS03      | SS03 |      | 29-Nov-16 | ASLP | < 0.02 | 1.22        | < 0.05 | < 0.05 | <0.02  | < 0.02 | < 0.02 | < 0.02 | 0.05  | < 0.02 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | 0.02   | < 0.02 | <0   | < 0.02 | < 0.02 | < 0.02 | 0.02   | < 0.02 | 1.17 | < 0.02 | < 0.05 | < 0.02 < | < 0.02  | 1.26   | 1.26 |
| ES1701175014 | SS04      | SS04 |      | 29-Nov-16 | ASLP | < 0.02 | 0.36        | < 0.05 | < 0.05 | < 0.02 | < 0.02 | < 0.02 | < 0.02 | <0.02 | < 0.02 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.01 | < 0.02 | <0   | <0.02  | < 0.02 | < 0.02 | < 0.02 | < 0.02 | 0.36 | < 0.02 | < 0.05 | < 0.02 < | <0.02 ( | 0.36 0 | 0.36 |
| ES1701175015 | SS05      | SS05 |      | 29-Nov-16 | ASLP | < 0.02 | 1.41        | < 0.05 | < 0.05 | < 0.02 | < 0.02 | < 0.02 | < 0.02 | 0.09  | 0.06   | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | 0.12   | < 0.02 | <0   | < 0.02 | < 0.02 | 0.05   | 0.07   | < 0.02 | 1.32 | < 0.02 | < 0.05 | < 0.02 < | < 0.02  | 1.71   | 1.71 |
| ES1701175016 | SS06      | SS06 |      | 29-Nov-16 | ASLP | < 0.02 | 2.27        | < 0.05 | < 0.05 | < 0.02 | < 0.02 | < 0.02 | < 0.02 | 0.03  | < 0.02 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | <0.01  | < 0.02 | <0   | < 0.02 | < 0.02 | < 0.02 | 0.02   | < 0.02 | 2.24 | < 0.02 | < 0.05 | < 0.02 < | < 0.02  | 2.29   | 2.29 |
| ES1701175017 | SS07      | SS07 |      | 29-Nov-16 | ASLP | < 0.02 | 1.26        | < 0.05 | < 0.05 | < 0.02 | < 0.02 | < 0.02 | < 0.02 | <0.02 | < 0.02 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.01 | < 0.02 | <0   | < 0.02 | < 0.02 | < 0.02 | < 0.02 | < 0.02 | 1.26 | < 0.02 | < 0.05 | < 0.02 < | <0.02 1 | 1.26   | 1.26 |
| ES1701294003 | MW01_0.1  | MW01 | 0.1  | 30-Nov-16 | TCLP | < 0.02 | <u>111</u>  | < 0.05 | < 0.05 | < 0.02 | <0.02  | 0.56   | 1.73   | 4.72  | 0.45   | 0.33   | < 0.05 | < 0.05 | < 0.05 | < 0.05 | 0.97   | 0.9    | 0.37   | <0.1 | 0.08   | < 0.02 | 0.13   | 1.62   | 0.11   | 106  | < 0.02 | < 0.05 | < 0.02   | <0.02   | 118    | 116  |
| ES1701294004 | MW01_9.0  | MW01 | 9    | 30-Nov-16 | TCLP | < 0.02 | 2.08        | < 0.05 | < 0.05 | < 0.02 | < 0.02 | 0.16   | 0.02   | 0.25  | 0.11   | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | 0.02   | 0.08   | <0.1 | <0.02  | < 0.02 | < 0.02 | 0.25   | < 0.02 | 1.83 | <0.02  | <0.05  | < 0.02 < | < 0.02  | 2.72   | 2.62 |

Env Stds Comments #1:WA DER 2017 - PFC Guidelines, dilution factor of 10 applied

# Appendix B Table C Groundwater and surface water analytical results

|                                                                              |                   | Fiel                                     | d Paramete                 | ers             |                        |                                           | Inorganics        |                                     |                                     |                                          |                                   |                                  |                                                  |                                                 |                                    |                                |                                         |                         |                                   |                                       |                                              |                                       |                                               | PF.                                   | AS                              | _ |
|------------------------------------------------------------------------------|-------------------|------------------------------------------|----------------------------|-----------------|------------------------|-------------------------------------------|-------------------|-------------------------------------|-------------------------------------|------------------------------------------|-----------------------------------|----------------------------------|--------------------------------------------------|-------------------------------------------------|------------------------------------|--------------------------------|-----------------------------------------|-------------------------|-----------------------------------|---------------------------------------|----------------------------------------------|---------------------------------------|-----------------------------------------------|---------------------------------------|---------------------------------|---|
|                                                                              | DO (mg/l) (Field) | 55<br>SS Electrical conductivity (field) | 日本<br>日本<br>日本<br>日本<br>日本 | ≅ Redox (Field) | ငံ Temperature (Field) | Sulfate as SO4 - Turbidimetric (Filtered) | (qap)<br>Hd Units | 고 Total Dissolved Solids (Filtered) | Perfluorodecanesulfonic acid (PFDS) | FFHxS and PFOS (Sum of Total) - Lab Calc | ↓ 4:2 Fluorotelomer sulfonic acid | 10:2 Fluorotelomer sulfonic acid | B N-Ethyl perfluorooctane sulfonamidoacetic acid | D-Methyl perfluorooctane sulfonamidoacetic acid | ₽<br>Perfluorobutane sulfonic acid | berfluoroheptane sulfonic acid | → Perfluorohexane sulfonic acid (PFHxS) | Perfluoropentanoic acid | A 8:2 Fluorotelomer sulfonic acid | A N-Ethyl perfluorooctane sulfonamide | 는 N-Ethyl perfluorooctane sulfonamidoethanol | h. Methyl perfluorooctane sulfonamide | 는 N-Methyl perfluorooctane sulfonamidoethanol | 5.2 Fluorotelomer Sulfonate (6:2 FTS) | 는 Perfluorooctanoic acid (PFOA) |   |
| EQL                                                                          |                   |                                          |                            |                 |                        | 1                                         | 0.01              | 10                                  | 0.02                                | 0.01                                     | 0.05                              | 0.05                             | 0.02                                             | 0.02                                            | 0.02                               | 0.02                           | 0.02                                    | 0.02                    | 0.05                              | 0.05                                  | 0.05                                         | 0.05                                  | 0.05                                          | 0.05                                  | 0.01                            | Г |
| NEPM 2013 Table 1C GILs, Drinking Water (inclusive of WA DER PFAS criterion) |                   |                                          |                            |                 |                        |                                           |                   |                                     |                                     | 0.5 #2                                   |                                   |                                  |                                                  |                                                 |                                    |                                |                                         |                         |                                   |                                       |                                              |                                       |                                               |                                       | 5 <sup>#2</sup>                 | Γ |
| NEPM 2013 Table 1C GILs, Fresh Waters (inclusive of WA DER PFAS criterion)   |                   |                                          |                            |                 |                        |                                           |                   |                                     |                                     | 0.00023 #1                               |                                   |                                  |                                                  |                                                 |                                    |                                |                                         |                         |                                   |                                       |                                              |                                       |                                               |                                       | 19 <sup>#1</sup>                | Ĺ |
| NHMRC Recreational Guidelines 2008 (inclusive of WA DER PFAS criterion)      |                   |                                          |                            |                 |                        |                                           |                   |                                     |                                     | <u>5</u> #3                              |                                   |                                  |                                                  |                                                 |                                    |                                |                                         |                         |                                   |                                       |                                              |                                       |                                               |                                       | <u>50 <sup>#3</sup></u>         | L |

#### Field\_ID Location\_Code Sampled\_Date

| TICIU_ID | Location_code | Jampieu_Date |      |      |      |       |      |     |      |      |        |            |        |        |       |        |        |        |                    |        |        |        |        |        |        |        |                    |        |      |        |        |        |        |                    |        |                   |        |
|----------|---------------|--------------|------|------|------|-------|------|-----|------|------|--------|------------|--------|--------|-------|--------|--------|--------|--------------------|--------|--------|--------|--------|--------|--------|--------|--------------------|--------|------|--------|--------|--------|--------|--------------------|--------|-------------------|--------|
| SW01     | SW01          | 29-Nov-16    | -    | -    | -    | -     | -    | 16  | 7.29 | 250  | -      | 2.4        | < 0.05 | < 0.05 | <0.02 | < 0.02 | 0.07   | 0.02   | 0.39               | 0.21   | <0.05  | < 0.05 | < 0.05 | <0.05  | < 0.05 | 0.13   | 0.06               | 0.06   | <0.1 | < 0.02 | < 0.02 | < 0.02 | 0.04   | 0.19               | <0.02  | 2.01              | < 0.02 |
| SW02     | SW02          | 29-Nov-16    | -    | -    | -    | -     | -    | 6   | 6.87 | 158  | -      | 0.2        | < 0.05 | < 0.05 | <0.02 | < 0.02 | < 0.02 | <0.02  | < 0.02             | < 0.02 | <0.05  | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.01             | < 0.02 | <0.1 | < 0.02 | < 0.02 | < 0.02 | < 0.02 | < 0.02             | <0.02  | 0.2               | < 0.02 |
| SW03     | SW03          | 29-Nov-16    | -    | -    | -    | -     | -    | 8   | 7.01 | 176  | -      | 1.63       | < 0.05 | < 0.05 | <0.02 | < 0.02 | 0.06   | <0.02  | 0.31               | 0.2    | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | 0.09   | 0.05               | 0.07   | <0.1 | < 0.02 | < 0.02 | <0.02  | 0.02   | 0.4                | <0.02  | 1.32              | < 0.02 |
| FS01     | SW03          | 29-Nov-16    | -    | -    | -    | -     | -    | -   | 7.7  | -    | < 0.01 | <u>150</u> | <0.01  | -      | -     | -      | 0.03   | -      | 0.18 <sup>#1</sup> | 0.08   | < 0.01 | < 0.05 | -      | < 0.05 | -      | 0.05   | 0.04 <sup>#1</sup> | -      | 0.07 | < 0.01 | -      | < 0.01 | 0.03   | 0.15 <sup>#1</sup> | 0.02   | 1.1 <sup>#1</sup> | < 0.05 |
| FD01     | SW03          | 29-Nov-16    | -    | -    | -    | -     | -    | -   | 7.05 | 162  | -      | 1.48       | < 0.05 | < 0.05 | <0.02 | < 0.02 | 0.06   | < 0.02 | 0.24               | 0.2    | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.01             | 0.08   | <0.1 | < 0.02 | < 0.02 | < 0.02 | 0.04   | 0.39               | <0.02  | 1.24              | < 0.02 |
| FD01     | MW01          | 24-Jan-17    | -    | -    | -    | -     | -    | -   | 7.79 | 1020 | < 0.02 | 0.86       | < 0.05 | < 0.05 | <0.02 | < 0.02 | 0.15   | < 0.02 | 0.26               | 0.12   | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | 0.03               | 0.08   | <0.1 | < 0.02 | -      | < 0.02 | 0.06   | 0.32               | < 0.02 | 0.6               | < 0.02 |
| MW01     | MW01          | 24-Jan-17    | 5.72 | 1826 | 7.51 | 176.6 | 21.1 | 70  | 7.77 | 1670 | < 0.02 | 0.88       | < 0.05 | < 0.05 | <0.02 | < 0.02 | 0.14   | <0.02  | 0.24               | 0.13   | <0.05  | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | 0.03               | 0.08   | <0.1 | < 0.02 | -      | < 0.02 | 0.04   | 0.33               | <0.02  | 0.64              | < 0.02 |
| MW02     | MW02          | 24-Jan-17    | 5.66 | 1757 | 7.22 | 156.3 | 21.4 | 60  | 7.8  | 1150 | < 0.02 | <0.02      | < 0.05 | < 0.05 | <0.02 | < 0.02 | < 0.02 | <0.02  | < 0.02             | < 0.02 | <0.05  | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.01             | < 0.02 | <0.1 | < 0.02 | -      | < 0.02 | < 0.02 | < 0.02             | <0.02  | < 0.01            | < 0.02 |
| MW03     | MW03          | 24-Jan-17    | 1.98 | 2599 | 7.73 | 129.5 | 21.5 | 155 | 7.71 | 1700 | < 0.02 | <0.02      | < 0.05 | < 0.05 | <0.02 | < 0.02 | < 0.02 | <0.02  | < 0.02             | < 0.02 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.01             | < 0.02 | <0.1 | < 0.02 | -      | < 0.02 | < 0.02 | < 0.02             | <0.02  | < 0.01            | < 0.02 |

Env Stds Comments #1: WA DER 2017 - Ecological PFC 99% species protection guidelines #2: WA DER 2017 - Drinking water guideline, based on enHealth (2016) recommendations #3: WA DER 2017 - Recreational waters guideline, based on enHealth (2016) recommendations

Data Comments

#1 Quantification of linear and branched isomers has been conducted as a single total response using the relative response factor for the corresponding linear/branched standard.

|   | Perfluor opentane sulfonic acid | Perfluorobutanoic acid | Perfluorodecanoic acid | Perfluorodecane sulfonic acid | Perfluorododecanoic acid | Perfluor oheptanoic acid | Perfluorohexanoic acid (PFHxA) | Perfluorononanoic acid | Perfluorooctane sulfonic acid (PFOS) | Perfluorooctane sulfonamide (FOSA) |
|---|---------------------------------|------------------------|------------------------|-------------------------------|--------------------------|--------------------------|--------------------------------|------------------------|--------------------------------------|------------------------------------|
| L | µg/L                            | µg/L                   | µg/L                   | µg/L                          | µg/L                     | µg/L                     | µg/L                           | µg/L                   | µg/L                                 | µg/L                               |
|   | 0.02                            | 0.1                    | 0.02                   | 0.02                          | 0.02                     | 0.02                     | 0.02                           | 0.02                   | 0.01                                 | 0.02                               |
|   |                                 |                        |                        |                               |                          |                          |                                |                        |                                      |                                    |
|   |                                 |                        |                        |                               |                          |                          |                                |                        |                                      |                                    |
| 3 |                                 |                        |                        |                               |                          |                          |                                |                        |                                      |                                    |

Appendix B Table C Groundwater and surface water analytical results

|                                                                              |                             |                           |                          |                     |                                  |                                 | Alk                             | alinity                     |                                 |                    |          |                      | Majo         | r lons               |                   |               |               |
|------------------------------------------------------------------------------|-----------------------------|---------------------------|--------------------------|---------------------|----------------------------------|---------------------------------|---------------------------------|-----------------------------|---------------------------------|--------------------|----------|----------------------|--------------|----------------------|-------------------|---------------|---------------|
|                                                                              | Perfluorotetradecanoic acid | Perfluorotridecanoic acid | Perfluoroundecanoic acid | PFAS (Sum of Total) | PFAS (Sum of Total)(WA DER List) | Alkalinity (Carbonate as CaCO3) | Alkalinity (Hydroxide as CaCO3) | Alkalinity (total as CaCO3) | Bicarbonate Alkalinity as CaCO3 | Calcium (Filtered) | Chloride | Magnesium (Filtered) | Anions Total | Potassium (Filtered) | Sodium (Filtered) | Cations Total | lonic Balance |
|                                                                              | µg/L                        | µg/L                      | µg/L                     | µg/L                | µg/L                             | mg/L                            | mg/L                            | mg/L                        | mg/L                            | mg/L               | mg/L     | mg/L                 |              | mg/L                 | mg/L              | meq/L         | %             |
|                                                                              | 0.05                        | 0.02                      | 0.02                     | 0.01                | 0.01                             | 1                               | 1                               | 1                           | 1                               | 1                  | 1        | 1                    | 0.01         | 1                    | 1                 | 0.01          | 0.01          |
| NEPM 2013 Table 1C GILs, Drinking Water (inclusive of WA DER PFAS criterion) |                             |                           |                          |                     |                                  |                                 |                                 |                             |                                 |                    |          |                      |              |                      |                   |               |               |
| NEPM 2013 Table 1C GILs, Fresh Waters (inclusive of WA DER PFAS criterion)   |                             | ļ!                        | <sup> </sup>             |                     |                                  |                                 |                                 |                             |                                 |                    |          |                      |              |                      |                   |               |               |
| NHMRC Recreational Guidelines 2008 (inclusive of WA DER PFAS criterion)      | 1                           | 1 1                       | 1 '                      |                     |                                  |                                 |                                 |                             |                                 |                    |          |                      |              |                      |                   |               |               |

| Field_ID | Location_Code | Sampled_Date |      |
|----------|---------------|--------------|------|
| SW/01    | SW/01         | 29-Nov-16    | <0.0 |

| SW01 | SW01 | 29-Nov-16 | < 0.05 | < 0.02 | < 0.02 | 3.18   | 3.1    | <1 | <1 | 73  | 73  | 6  | 11  | 4  | 2.1  | 4 | 24  | 1.77 | -    |
|------|------|-----------|--------|--------|--------|--------|--------|----|----|-----|-----|----|-----|----|------|---|-----|------|------|
| SW02 | SW02 | 29-Nov-16 | < 0.05 | <0.02  | <0.02  | 0.2    | 0.2    | <1 | <1 | 35  | 35  | 4  | 6   | 2  | 0.99 | 3 | 6   | 0.7  | -    |
| SW03 | SW03 | 29-Nov-16 | < 0.05 | <0.02  | <0.02  | 2.52   | 2.45   | <1 | <1 | 60  | 60  | 4  | 10  | 3  | 1.65 | 5 | 20  | 1.44 | -    |
| FS01 | SW03 | 29-Nov-16 | < 0.01 | <0.01  | <0.01  | -      | -      | -  | -  | -   | -   | -  | -   | -  | -    | - | -   | -    | -    |
| FD01 | SW03 | 29-Nov-16 | < 0.05 | < 0.02 | < 0.02 | 2.25   | 2.17   | -  | -  | -   | -   | -  | -   | -  | -    | - | -   | -    | -    |
| FD01 | MW01 | 24-Jan-17 | < 0.05 | < 0.02 | < 0.02 | 1.62   | 1.54   | -  | -  | -   | -   | -  | -   | -  | -    | - | -   | -    | -    |
| MW01 | MW01 | 24-Jan-17 | < 0.05 | < 0.02 | < 0.02 | 1.63   | 1.55   | <1 | <1 | 290 | 290 | 18 | 448 | 24 | 19.9 | 1 | 316 | 16.6 | 8.88 |
| MW02 | MW02 | 24-Jan-17 | < 0.05 | < 0.02 | < 0.02 | < 0.02 | < 0.02 | <1 | <1 | 308 | 308 | 18 | 384 | 23 | 18.2 | 2 | 305 | 16.1 | 6.19 |
| MW03 | MW03 | 24-Jan-17 | < 0.05 | < 0.02 | < 0.02 | < 0.02 | < 0.02 | <1 | <1 | 186 | 186 | 38 | 749 | 41 | 28.1 | 9 | 420 | 23.8 | 8.3  |

Env Stds Comments #1: WA DER 2017 - Ecological PFC 99% species protection guidelines #2: WA DER 2017 - Drinking water guideline, based on enHealth (2016) recommendatio #3: WA DER 2017 - Recreational waters guideline, based on enHealth (2016) recommen

Data Comments #1 Quantification of linear and branched isomers has been conducted as a single total r

**Appendix C** – Field Sampling Sheets and equipment calibration certificates

| Job Information     Durging and San       Job Information     Job Information       Job Information     Job Information       Job Information     Job Information       Simple:     Job Information       Project:     Deniliquin PFAS Investigation       Sample:     CWInee       Proj     Volume       Proj     Jan-17       Round     Jan-17       Field Fi     WLevel       Round     Jan-17       Field Fi     Proj       Stable when 3 consecutive     -       Proj     Denility       Proj     Proj       Proj     Proj       Proj     Proj       P | Purging and Sampling Record       Sampling Information       Sampling Information       Sampling Information       Sampling Information       Sampling Information       Sample Method:(P.UR)       Not Meter Type:(P.UR)       In PEAS Investigation       Sample Method:(P.UR)       Not Meter Type:(P.UR)       PH       Field Filtered? Y / N (filter vest)       In PL-S     S - 01     I111b     2 - 73     - 10%       Price     P-     A-     A-     - 10%     A-       Price     P-     A-     A-     - 10%     A-       Price     P-     A-     A-     - 10%     A-       Price     P-     A-     - 23%     A-     - 23%     23%       Price     P-     P-     P-     P-     P-     P-       Price     P-     P-     P-     P-     P-       P-     P-     P-     P-     P-     P-       P-     P-     P-     P-     P-     P-       P-     P-     P-     P-     P-     P-       P- | and Sampling R<br>sam<br>Purge Method: | Ing Record<br>sampling Information<br>od:M.u. Culo P.W.M.<br>Nod: | BITEX   | Fige / Gge<br>Stable filter, fi<br>Stable filter, fi<br>Stable<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105<br>11.1105 | SWL(mbTOC):<br>Screen:<br>NAPL Check:<br>Ref.datum:<br>Bore Depth:<br>ilter/syringe)<br> | Bore ID:M<br>Bore Information<br>From:                                                                 | LAD. O.2                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-------------------------------------------------------------------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|----------------------------------|
| Was sampling equipment pre-cleaned $\mathcal{W}/N$<br>COC updated $\mathcal{W}/N$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | t pre-cleaned (Y)/ N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                        |                                                                   |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                          |                                                                                                        |                                  |
| Comment: Duplicate samples collected, bottles used, access, condition of headworks etc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ples collected, bottles us                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | sed, access, conc                      | dition of headwor                                                 | rks etc |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                          | Purge Volumes<br>Casing Int. Dia (mm) 50 100<br>Vol (L/m of casing) 2.0 7.9<br>*Double for gravel pack | s<br>100 150<br>7.9 17.7<br>pack |

| GHD                              |                                                                                                            | Purgi                      | ng and           | Purging and Sampling Record          | ng Reco                  | ord                                                                      |                          |                           |                                             | Bore ID:MUNO3                                                                                  |
|----------------------------------|------------------------------------------------------------------------------------------------------------|----------------------------|------------------|--------------------------------------|--------------------------|--------------------------------------------------------------------------|--------------------------|---------------------------|---------------------------------------------|------------------------------------------------------------------------------------------------|
| Client                           | Job Information<br>Client: Fire & Rescue NSW                                                               | mation                     |                  | Purde Metho                          | Sampling I.              | Burne Mathod: M. CODUN AC                                                |                          | SWI (mbTOC).              | SWI (mbTOC): $12.15L$ m $10$                | lation<br>Lonic Check: ≫                                                                       |
| Project                          | Project: Deniliquin PFAS Investigation                                                                     | FAS Inves                  | _                | Sample Meth                          | Nod: LO.W.               | Sample Method: Lo.U                                                      |                          | Screen:                   |                                             | 1                                                                                              |
| Proj. No.                        | Proj. No.: 21/25583/05                                                                                     | 10                         |                  | WQ Meter T                           | vpe: 121                 | LID L                                                                    | 271                      | NAPL Check:               | NAPL Check:                                 | Bore Diam.:30 mm                                                                               |
| Sampler:<br>Date:                | Sampler: C.Wines<br>Date: ンゼ 01/17                                                                         | 11                         |                  | Flow Cell: N N<br>WLevel Meter Type: | Y N<br>ar Type:          | Pump Depth:l.bn<br>Dip / Fox / Int.Fce / Gge                             | <b>l6</b> m<br>Fce / Gge | Ref.datum:<br>Bore Depth: | m 17:39                                     | Well Cap Secure?                                                                               |
| Round                            |                                                                                                            |                            |                  | Field Filtered                       | d? Y / N (filte          | Field Filtered? Y / N (filter vessel, disposable filter, filter/syringe) | sable filter, f          | ilter/syringe)            |                                             |                                                                                                |
| Time<br>()                       | Volume<br>(L)                                                                                              | Temp<br>(°C)               | pH<br>(pH units) | Elec.Cond                            | Dis.Oxygen<br>(+0+110-+) | Ox-Red Pt.<br>(± mV)                                                     | SWL<br>(m TOC)           | (CPM)                     | Comment:<br>Colour, turbidity, sediment loa | Comment:<br>Colour, turbidity, sediment load, sheen, odour, flow rate, purged dry?             |
| Stable whe                       | Stable when (3 consecutive readings):                                                                      | 1                          | +/- 0.05 pH      | +/- 3%                               | +/- 10%                  | +/- 10 mV                                                                | stable                   |                           |                                             |                                                                                                |
|                                  | and the second of                                                                                          |                            | franker and the  |                                      |                          |                                                                          | 12150                    | C C A A C                 | n douth -                                   |                                                                                                |
| 42:01                            | 2.0                                                                                                        | 1-12                       | 176              | 2808                                 | 40-4                     | 1.94-                                                                    | 12-180                   | 3                         | Lear-brown                                  | choudy ned trats                                                                               |
| 92:01                            | 0-1                                                                                                        | 21.5                       | 7-84             | 2815                                 | 3.43                     | -68.4                                                                    | 5 N                      | 2                         | no adoll' no                                | o sheen                                                                                        |
| 10:29                            | 1.5                                                                                                        | しい                         | 7.88             | 2380                                 | 276                      | 18.9                                                                     | 12.218                   | 2                         | 3                                           | ત                                                                                              |
| 10131                            | 20                                                                                                         | 7.3                        | 2-88             | 734                                  | 2.43                     | -823                                                                     | 4 4                      | 2                         | ۲                                           | α                                                                                              |
| 10:33                            | 2.2                                                                                                        | 21-4                       | 7-85             | 2699                                 | 1.97                     | -85.4                                                                    | <b>د</b><br>۲            | 2                         | در                                          | 4                                                                                              |
| 10:36                            | 3.0                                                                                                        | His                        | 7.84             | 2683                                 | 1.88                     | -85.3                                                                    | <b>1</b> 3               | 2                         | 3                                           | c /                                                                                            |
| 10138                            | 3.5                                                                                                        | フレート                       | 7.80             | 2649                                 | 1.87                     | -2.28-                                                                   | 5                        | 2                         | ĸ                                           | Ľ.                                                                                             |
| 04101                            | 4-0                                                                                                        | ナート                        | イレト              | 7625                                 | 1-8-1                    | 2.62-                                                                    | u u                      | 2                         | ч                                           | ζ                                                                                              |
| 24:01                            | 1                                                                                                          | 24.5                       | 7.73             | 1599                                 | 1.98                     | 5-52-                                                                    | a u                      | 2                         | 2                                           | ĩ                                                                                              |
|                                  | Porouneters                                                                                                | leters                     | stable           | e. Brefau                            |                          | rang hing                                                                | at                       | 24:01                     |                                             |                                                                                                |
|                                  |                                                                                                            |                            |                  |                                      |                          |                                                                          |                          |                           |                                             |                                                                                                |
|                                  |                                                                                                            |                            |                  |                                      |                          |                                                                          |                          |                           |                                             |                                                                                                |
|                                  |                                                                                                            |                            |                  |                                      |                          |                                                                          |                          |                           |                                             |                                                                                                |
|                                  | Fie                                                                                                        | Field QA Checks:           | ks:              | ٩                                    |                          |                                                                          |                          |                           |                                             |                                                                                                |
| Air bubble                       | Air bubbles in vials? Y /N Any violent reactions? Y /N                                                     | N Any viole                | ent reactions    | S?YIN)                               | Paran                    | BTEX                                                                     | трн ран                  | CHC PCB                   | OCP OPP Tot. Metal Biol.                    |                                                                                                |
| Decontam<br>Was samp<br>COC upda | Decontamination as per GHD procedure?C// N<br>Was sampling equipment pre-cleaned?C// N<br>COC updated?// N | GHD proced<br>t pre-cleane | dure?@/ N        |                                      | Preservatives            | atives                                                                   |                          |                           | _                                           |                                                                                                |
| Commen                           | Comment: Dunlicate samules collected hottles used access condition of headworks etc                        | nlae collecta              | d hottles use    | d arrass cond                        | lition of headwo         | urlic atr                                                                |                          |                           |                                             | imes                                                                                           |
|                                  | L. Duplicate sam<br>RB01                                                                                   | toher collected,           | a, pomes use     | purvo                                | 111011 01 116guwo        | LIKS ELC                                                                 |                          |                           |                                             | Casing Int. Dia (mm) 50 100 150<br>Vol (L/m of casing) 2.0 7.9 17.7<br>*Double for gravel pack |
|                                  |                                                                                                            |                            |                  | -                                    |                          |                                                                          |                          |                           |                                             |                                                                                                |

## Instrument Interface Meter (30M) Serial No. 288044



| ltem            | Test             | Pass                  | Comments |
|-----------------|------------------|-----------------------|----------|
| Battery         | Compartment      | 1                     |          |
|                 | Capacity         | 1                     |          |
|                 | above 7.9V       |                       |          |
| Probe           | Cleaned/Decon.   | 1                     |          |
|                 | Operation        | ×                     |          |
| Connectors      | Condition        | <ul> <li>✓</li> </ul> |          |
|                 |                  | ✓                     |          |
| Tape Check      | Cleaned          | ✓                     |          |
| Connectors      | Checked for cuts |                       |          |
|                 |                  |                       |          |
| Instrument Test | At surface level | <ul> <li>✓</li> </ul> |          |
|                 |                  |                       |          |
|                 |                  |                       |          |
|                 |                  |                       |          |
|                 |                  |                       |          |
|                 |                  |                       |          |
|                 |                  |                       |          |
|                 |                  |                       |          |
|                 |                  |                       |          |
|                 |                  |                       |          |

# Certificate of Calibration

This is to certify that the above instrument has been cleaned and tested.

 Tested by:
 Caitlin Tolsma

 Test date:
 19/01/2017

Next Test due: 18/07/2017

| Instrument | YSI Quatro Pro Plus |
|------------|---------------------|
| Serial No. | 15K101081           |



| ltem          | Test               | Pass                                             | Comments                                                                                                        |
|---------------|--------------------|--------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| Battery       | Charge Condition   | √                                                |                                                                                                                 |
|               | Fuses              | $\checkmark$                                     |                                                                                                                 |
|               | Capacity           | 1                                                |                                                                                                                 |
|               |                    |                                                  |                                                                                                                 |
| Switch/keypad | Operation          | √                                                |                                                                                                                 |
| Display       | Intensity          | 2 🗸                                              | · · · · · · · · · · · · · · · · · · ·                                                                           |
|               | Operation          | · · · · · · · · · · · · · · · · · · ·            |                                                                                                                 |
|               | (segments)         | •<br>•                                           |                                                                                                                 |
| Grill Filter  | Condition          | 7                                                | ·····                                                                                                           |
|               | Seal               | $\checkmark$                                     |                                                                                                                 |
| РСВ           | Condition          | $\sim$                                           | маранаранан алтан алт |
| Connectors    | Condition          | $\checkmark$                                     | nan na sang sa                                                              |
| Sensor        | 1. pH              | $\checkmark$                                     | an ann an tha an                                                            |
|               | 2. mV              | $\checkmark$                                     |                                                                                                                 |
|               | 3. EC              | $\checkmark$                                     |                                                                                                                 |
|               | 4. D.O             |                                                  |                                                                                                                 |
|               | 5. Temp            |                                                  |                                                                                                                 |
|               |                    | · · · · · · · · · · · · · · · · · · ·            | ···· · · · · · · · · · · · · · · · · ·                                                                          |
| Alarms        | Reener             |                                                  | . <u></u>                                                                                                       |
| Alanns        | Beeper<br>Settings | and there are being a method of the state of the |                                                                                                                 |
| Software      | Version            | · · · · · · · · · · · · · · · · · · ·            |                                                                                                                 |
| Software      |                    |                                                  |                                                                                                                 |
| Data logger   | Operation          | 4 · · · · · · · · · · · · · · · · · · ·          |                                                                                                                 |
| Download      | Operation          | 1                                                |                                                                                                                 |
| Other tests:  |                    |                                                  |                                                                                                                 |

# Certificate of Calibration

This is to certify that the above instrument has been calibrated to the following specifications:

| Sensor          | Serial no | Standard Solutions | Certified | Solution Bottle<br>Number | Instrument Reading |
|-----------------|-----------|--------------------|-----------|---------------------------|--------------------|
| 1. D.O          |           | 0 ppm              |           | 1608226559                | 0 ppm              |
| 2. Conductivity |           | 2760uS             |           | 290786                    | 2760uS             |
| 3. pH7          |           | pH 7.00            |           | 288996                    | pH 7.00            |
| 4. pH4          |           | pH 4.00            |           | NI1607                    | pH 4.00            |
| 5. ORP mV       |           | 225.86             |           | NI 1033/1034              | 225.86             |
| 7. Temp °C      |           | 23.7               |           | Hanna- 163377             | 23.7               |

Calibrated by: Ariane Ventura

Calibration date:

17-Jan-17

Next calibration due: 16-Jul-17

# Appendix D – Borehole Logs



# **BOREHOLE LOG**

## ENVIRONMENTAL-GROUNDWATER

Page 1 of '

Client Fire & Rescue NSW Project Deniliquin FRNSW Site Investigation Project No. 212558305 Site Deniliquin Airport Location Deniliquin Airport, NSW 2710 Date Drilled 30/11/2016 - 01/12/2016

Drill Co. BG Drilling Co Driller Luke & Joel Rig Type D&B-8D Drill Method Solid Flight Auger Total Depth (m) 15 Diameter (mm) 125

Easting, Northing 313820.797, 6063782.963 Grid Ref GDA94\_MGA\_zone\_55 Elevation 93.77 Collar RL 93.688 Logged By Sid Paleri Checked By

| B.C.L             | <b>No.</b> N        | /A                       | Са                                                                                    | sinç  | PVC (C      | Class 18)             |             | Screen 0.5mm Slotted PVC                                                                                                           | (Class 18                     | 8)       | Surfa       | ice Comp                      | letion Gatic                                                                                          |                           |
|-------------------|---------------------|--------------------------|---------------------------------------------------------------------------------------|-------|-------------|-----------------------|-------------|------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|----------|-------------|-------------------------------|-------------------------------------------------------------------------------------------------------|---------------------------|
| Depth (m)         | Drilling Method     | PID (ppm)                | Sample ID                                                                             | Water |             | Well Details          | Graphic Log | LITHOLOGICAL DESCRIPTION<br>Soil Type (Classification Grou<br>Symbol): Particle Size; Colour<br>Secondary / Minor Component:       | p<br>r;                       | Moisture | Consistency | CC<br>II<br>Odours<br>materia | OMMENTS/<br>DNTAMINANT<br>NDICATORS<br>s, staining, waste<br>Is,separate phase<br>imported fill, ash. | Elevation (m)             |
| F                 | SFA                 | K <u>0.1</u>             | ( <u>MW01_0.1</u> )                                                                   |       | KK          |                       | × ///       | GRASS                                                                                                                              |                               | ð        |             |                               |                                                                                                       | È                         |
|                   |                     |                          | /MW01_1.0                                                                             |       |             |                       |             | clayey SAND, fine to medium, orange<br>brown (FILL)<br>CLAY, low to medium plasticity, brown<br>with mottled black- orange (NATURA |                               | D        | S           |                               |                                                                                                       | 93<br>-<br>-<br>92        |
| Ē                 |                     |                          |                                                                                       |       | 8           |                       |             | SOIL)                                                                                                                              |                               |          |             |                               |                                                                                                       | E o1                      |
| - 3<br>- 4        |                     |                          |                                                                                       |       |             |                       |             | sandy CLAY, yellow- brown with mott<br>orange, medium to coarse sand<br>(NATURAL - SOIL)                                           | led                           | D        | F           |                               |                                                                                                       | 91<br>                    |
| Ē                 |                     |                          |                                                                                       |       | 66          |                       |             |                                                                                                                                    |                               |          |             |                               |                                                                                                       | E<br>89                   |
| 5<br>1 1 1 6      |                     |                          |                                                                                       |       |             | Grout                 |             | CLAY, yellow- brown with mottled ora<br>(NATURAL - SOIL)                                                                           | ange                          | D        | F           |                               |                                                                                                       | 88                        |
|                   |                     |                          |                                                                                       |       |             |                       |             |                                                                                                                                    |                               |          |             |                               |                                                                                                       | -<br>87                   |
| 8                 |                     |                          |                                                                                       |       | $\bowtie$   |                       |             |                                                                                                                                    |                               |          |             |                               |                                                                                                       | 86                        |
| 9                 |                     | <u>/0</u>                | /MW01_9.0                                                                             | _     |             |                       |             | silty CLAY, yellow- brown, some fine sand (NATURAL - SOIL)                                                                         |                               | SM       | F           |                               |                                                                                                       | - 85<br>- 85              |
| L<br>L<br>10<br>L |                     |                          |                                                                                       |       |             |                       |             | SAND, fine, yellow- brown (NATURA<br>SOIL)                                                                                         | <br>L-                        | D        | D           |                               |                                                                                                       | 84                        |
| L 11              |                     |                          |                                                                                       |       |             | Bentonite             |             |                                                                                                                                    |                               |          |             |                               |                                                                                                       | - 83<br>-                 |
| - 12<br>-         |                     |                          |                                                                                       |       |             | Sand                  |             |                                                                                                                                    |                               |          |             |                               |                                                                                                       | - 82<br>-<br>-<br>-<br>81 |
| E 13              |                     |                          |                                                                                       | ₽     |             | Sanu                  |             |                                                                                                                                    |                               |          |             |                               |                                                                                                       | Ē                         |
| L 14              |                     |                          |                                                                                       |       |             | Wall                  |             | SAND, medium to coarse, yellow- bro<br>(NATURAL - SOIL)                                                                            | own                           | W        | D           |                               |                                                                                                       | - 80<br>- 70              |
| - 15<br>-         |                     |                          |                                                                                       |       |             | C <sub>collapse</sub> |             | Termination Depth at:15.00 m. Target                                                                                               | t                             |          |             |                               |                                                                                                       | - 79<br>-                 |
| L<br>16<br>L      |                     |                          |                                                                                       |       |             |                       |             | depth achieved.                                                                                                                    |                               |          |             |                               |                                                                                                       | - 78<br>-                 |
| E 17              |                     |                          |                                                                                       |       |             |                       |             |                                                                                                                                    |                               |          |             |                               |                                                                                                       | E 77<br>E                 |
| -<br>18<br>-      |                     |                          |                                                                                       |       |             |                       |             |                                                                                                                                    |                               |          |             |                               |                                                                                                       | - 76<br>- 76              |
| -<br>- 19<br>-    |                     |                          |                                                                                       |       |             |                       |             |                                                                                                                                    |                               |          |             |                               |                                                                                                       | - 75<br>-                 |
| -<br>Notes        | Bore                | hole colla               | apsed approximately 0.5 m                                                             | letre | s betwee    | n drilling dep        | oth (15.0r  | n) and installation of screen (14.5m)                                                                                              |                               |          |             |                               |                                                                                                       | - 74                      |
|                   |                     |                          |                                                                                       |       |             |                       |             |                                                                                                                                    |                               |          |             |                               |                                                                                                       |                           |
|                   |                     | assificati<br>reviations |                                                                                       | icati | on is bas   | ed on Austra          | lian Stan   | dards AS 1726-1993. This log is not i<br>Moisture Abbreviations                                                                    | intended<br>Consiste          |          |             |                               | ses.                                                                                                  |                           |
| AH-A              | -<br>\ir Han        | nmer, AR                 | -Air Rotary, BE-Bucket Exc                                                            |       |             |                       |             | D-Dry, SM-Slightly Moist,                                                                                                          | Granula                       | r Soil:  | s VL-V      | Very                          | Cohesive Soils \                                                                                      |                           |
| (shove<br>SD-So   | el), HF/<br>onic Dr | A-Hollow                 | H-Foam Hammer, HA-Hand<br>Flight Auger, NDD-Non De<br>A-Solid Flight Auger, SS-S<br>- | stru  | ctive Drill | ing, PT-Push          | tube,       | W-Wet, S-Saturated                                                                                                                 | Loose, L<br>Dense, E<br>Dense |          |             |                               | Soft, S-Soft, F-Firm<br>ST-Stiff, VST-Very S<br>H-Hard                                                |                           |

WS-Window Sampler



# **BOREHOLE LOG**

## ENVIRONMENTAL-GROUNDWATER

Page 1 of '

Client Fire & Rescue NSW Project Deniliquin FRNSW Site Investigation Project No. 212558305 Site Deniliquin Airport Location Deniliquin Airport, NSW 2710 Date Drilled 30/11/2016 - 01/12/2016

Drill Co. BG Drilling Co Driller Luke & Joel Rig Type D&B-8D Drill Method Solid Flight Auger Total Depth (m) 15.5 Diameter (mm) 125

Easting, Northing , Grid Ref GDA94\_MGA\_zone\_55 Elevation Collar RL -Logged By Sid Paleri Checked By

| B.C.L                    | No. N                        | /A                     | Ca                                                                                                             | sing          |                                                 |               | Screen                                                                                                                    |                                                 |          | Surfa       | ice Comp                      | letion                                                                                                |               |
|--------------------------|------------------------------|------------------------|----------------------------------------------------------------------------------------------------------------|---------------|-------------------------------------------------|---------------|---------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|----------|-------------|-------------------------------|-------------------------------------------------------------------------------------------------------|---------------|
| Depth (m)                | Drilling Method              | PID (ppm)              | Sample ID                                                                                                      | Water         | Well Details                                    | Graphic Log   | LITHOLOGICAL DESCRIPTIO<br>Soil Type (Classification Grou<br>Symbol); Particle Size; Colou<br>Secondary / Minor Component | ıp<br>ır;                                       | Moisture | Consistency | CC<br>IN<br>Odours<br>materia | OMMENTS/<br>DNTAMINANT<br>IDICATORS<br>s, staining, waste<br>Is,separate phase<br>imported fill, ash. | Elevation (m) |
| =                        | SFA                          | /0.2                   | /MW02_0.6                                                                                                      |               |                                                 |               | GRASS                                                                                                                     |                                                 | Ś        |             |                               |                                                                                                       | F             |
| <u> </u>                 |                              | <u>/0.1</u>            | /MW02_1.0                                                                                                      |               |                                                 |               | clayey SAND, red- brown (FILL)<br>CLAY, medium plasticity, dark brown                                                     |                                                 | D        | F           |                               |                                                                                                       | E -1          |
| E                        |                              |                        |                                                                                                                |               |                                                 |               | with mottled orange- red (NATURAL<br>SOIL)                                                                                | · .]                                            | D        | F           |                               |                                                                                                       | Ē,            |
| - 2<br>E                 |                              |                        |                                                                                                                |               |                                                 |               | CLAY, low to medium plasticity, yellow brown with mottled black (NATURAL                                                  |                                                 |          |             |                               |                                                                                                       | 2<br>         |
| E 3                      |                              |                        |                                                                                                                |               |                                                 | ////          | SOIL)                                                                                                                     | [                                               | D        | F           |                               |                                                                                                       | <b>-</b> -3   |
| Ë,                       |                              |                        |                                                                                                                |               |                                                 |               | sandy CLAY, low to medium plasticity<br>grey- brown with mottled red- brown                                               | ,                                               |          |             |                               |                                                                                                       | Ē,            |
| – 4<br>E                 |                              |                        |                                                                                                                |               |                                                 |               | medium to coarse sand (NATURAL -<br>SOIL)                                                                                 | -                                               |          |             |                               |                                                                                                       | E -4          |
| 5                        |                              |                        |                                                                                                                |               |                                                 |               |                                                                                                                           |                                                 |          |             |                               |                                                                                                       | 5             |
| 6                        |                              |                        |                                                                                                                |               |                                                 |               |                                                                                                                           |                                                 |          |             |                               |                                                                                                       | 6             |
|                          |                              |                        |                                                                                                                |               |                                                 |               |                                                                                                                           |                                                 |          |             |                               |                                                                                                       |               |
| - 7                      |                              |                        |                                                                                                                |               |                                                 |               | silty CLAY, low to medium plasticity,<br>yellow- brown (NATURAL - SOIL)                                                   |                                                 | D        | F           |                               |                                                                                                       | 7             |
| -<br>- 8                 |                              |                        |                                                                                                                |               |                                                 |               |                                                                                                                           |                                                 |          |             |                               |                                                                                                       | E _8          |
|                          |                              |                        |                                                                                                                |               |                                                 |               |                                                                                                                           |                                                 |          |             |                               |                                                                                                       | Ē             |
| - 9                      |                              |                        |                                                                                                                |               |                                                 |               |                                                                                                                           |                                                 |          |             |                               |                                                                                                       | 9             |
| E<br>10                  |                              |                        |                                                                                                                |               |                                                 |               | SAND, fine, yellow- brown, trace silt (NATURAL - SOIL)                                                                    |                                                 | D        | D           |                               |                                                                                                       | E<br>-10      |
|                          |                              |                        |                                                                                                                |               |                                                 |               | · · · ·                                                                                                                   |                                                 |          |             |                               |                                                                                                       | E             |
| - 11                     |                              |                        |                                                                                                                |               |                                                 |               |                                                                                                                           |                                                 |          |             |                               |                                                                                                       | 11            |
| E<br>12                  |                              |                        |                                                                                                                |               |                                                 |               |                                                                                                                           |                                                 |          |             |                               |                                                                                                       | E<br>-12      |
| Ē                        |                              |                        |                                                                                                                |               |                                                 |               | SAND, fine, dark orange- brown, tra<br>silt (NATURAL - SOIL)                                                              | ce                                              | D        | D           |                               |                                                                                                       | Ē             |
| - 13<br>-                |                              |                        | /MW02_13.5                                                                                                     | ₽             |                                                 |               | SAND, medium to coarse, brown, tra                                                                                        | ice                                             | W        | D           |                               |                                                                                                       | 13            |
| -<br>14                  |                              |                        |                                                                                                                |               |                                                 |               | clay (NATURAL - SOIL)                                                                                                     |                                                 |          |             |                               |                                                                                                       | E -14         |
| Ē                        |                              |                        |                                                                                                                |               |                                                 |               |                                                                                                                           |                                                 |          |             |                               |                                                                                                       | E             |
| - 15<br>-                |                              |                        |                                                                                                                |               |                                                 |               |                                                                                                                           |                                                 |          |             |                               |                                                                                                       | E -15         |
| - 16                     |                              |                        |                                                                                                                |               |                                                 |               | Termination Depth at:15.50 m. Boreh<br>collapse.                                                                          | nole                                            |          |             |                               |                                                                                                       | E -16         |
| Ē                        |                              |                        |                                                                                                                |               |                                                 | `             |                                                                                                                           |                                                 |          |             |                               |                                                                                                       | E             |
| - 17<br>-                |                              |                        |                                                                                                                |               |                                                 |               |                                                                                                                           |                                                 |          |             |                               |                                                                                                       | - 17          |
| -<br>18                  |                              |                        |                                                                                                                |               |                                                 |               |                                                                                                                           |                                                 |          |             |                               |                                                                                                       | 18            |
|                          |                              |                        |                                                                                                                |               |                                                 |               |                                                                                                                           |                                                 |          |             |                               |                                                                                                       | El            |
| - 19<br>-                |                              |                        |                                                                                                                |               |                                                 |               |                                                                                                                           |                                                 |          |             |                               |                                                                                                       | 19<br>-       |
| F                        |                              |                        |                                                                                                                |               |                                                 |               |                                                                                                                           |                                                 |          |             |                               |                                                                                                       | F             |
|                          |                              |                        | <ol> <li>5 metres to try and accoun<br/>nstallation of MW02B.</li> </ol>                                       | t for         | borehole collapse. Di                           | d not wor     | k. Well collapse from 15.5 to 13.7 me                                                                                     | etres. We                                       | ll was   | subseq      | uently dec                    | ommissioned                                                                                           |               |
| GHD                      | Soil Cla                     | assificat              | ions The GHD Soil Classif                                                                                      | icati         | on is based on Austral                          | lian Stand    | dards AS 1726-1993. This log is not                                                                                       | intended                                        | l for g  | eotechn     | ical purpo                    | ses.                                                                                                  |               |
|                          | -                            | eviation               |                                                                                                                |               |                                                 |               |                                                                                                                           | Consist                                         |          |             |                               |                                                                                                       |               |
| DC-Di<br>(shove<br>SD-So | amono<br>el), HF/<br>onic Dr | d Core, Fl<br>A-Hollow | -Air Rotary, BE-Bucket Exc<br>H-Foam Hammer, HA-Hanc<br>Flight Auger, NDD-Non De<br>A-Solid Flight Auger, SS-S | l Au<br>struc | ger, HE-Hand Excava<br>ctive Drilling, PT-Pusht | tion<br>tube, | M-Moist, VM-Very Moist,<br>W-Wet, S-Saturated                                                                             | <b>Granula</b><br>Loose, L<br>Dense, E<br>Dense | -Loos    | se, MD-N    | Medium                        | Cohesive Soils \<br>Soft, S-Soft, F-Firm<br>ST-Stiff, VST-Very S<br>H-Hard                            | ,             |

WS-Window Sampler



# BOREHOLE LOG

## ENVIRONMENTAL-GROUNDWATER

Page 1 of '

Client Fire & Rescue NSW Project Deniliquin FRNSW Site Investigation Project No. 212558305 Site Deniliquin Airport Location Deniliquin Airport, NSW 2710 Date Drilled 15/12/2016 - 15/12/2016 Drill Co. BG Drilling Co Driller Matt & Randall Rig Type D&B-8D Drill Method Solid Flight Auger Total Depth (m) 15 Diameter (mm) 125 Easting, Northing 313742.547, 6063752.26 Grid Ref GDA94\_MGA\_zone\_55 Elevation 92.78 Collar RL 92.682 Logged By Alice Walker Checked By

| B.C.L                                                                                                                                                                                                                                          | <b>No.</b> N/   | 'A         | Ca                        | sinç   | PVC (C    | Class 18)                                          |             | Screen 0.5mm Slotted PVC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C (Class 1 | 8)                    | Surfa       | ace Completion Gatic                                                                                                          |                                                                                                                                                                                                                                                                                              |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|------------|---------------------------|--------|-----------|----------------------------------------------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------------------|-------------|-------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Depth (m)                                                                                                                                                                                                                                      | Drilling Method | PID (ppm)  | Sample ID                 | Water  |           | Well Details                                       | Graphic Log | LITHOLOGICAL DESCRIPTIC<br>Soil Type (Classification Gro<br>Symbol); Particle Size; Colou<br>Secondary / Minor Componen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | up<br>Jr;  | Moisture              | Consistency | COMMENTS/<br>CONTAMINANT<br>INDICATORS<br>Odours, staining, waste<br>materials,separate phase<br>liquids, imported fill, ash. | Elevation (m)                                                                                                                                                                                                                                                                                |
| 1<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>10<br>11<br>12<br>13<br>14<br>16<br>17<br>18<br>19<br>10<br>11<br>12<br>13<br>14<br>14<br>15<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | SFA             |            | /MW02B_10.2               | ⊻      |           | -Grout<br>-Bentonite<br>-Sand<br>_Wall<br>collapse |             | sandy CLAY, medium plasticity, brov<br>angular, coarse, poorly graded sand<br>(NATURAL - SOIL)<br>CLAY, high plasticity, pale brown<br>(NATURAL - SOIL)<br>-sandy CLAY, medium to high plastic<br>pale orange- brown, angular, mediu<br>coarse, poorly graded sand (NATUF<br>SOIL)<br>SAND, fine to coarse, poorly graded<br>subangular, orange- brown, some of<br>(NATURAL - SOIL)<br>sandy CLAY, low to medium plastici<br>pale brown, angular, fine to coarse,<br>poorly graded sand (NATURAL - SOI<br>(NATURAL - SOIL)<br>-:CLAY, high plasticity, pale brown wit<br>-:mottled grey (NATURAL - SOIL)<br>Termination Depth at:15.00 m. Targe<br>depth achieved. |            | SM<br>D SM<br>SM<br>V | F S L L     |                                                                                                                               | 92<br>91<br>90<br>89<br>88<br>87<br>88<br>87<br>88<br>87<br>88<br>87<br>88<br>87<br>88<br>87<br>88<br>87<br>88<br>87<br>88<br>87<br>88<br>87<br>88<br>87<br>88<br>87<br>88<br>87<br>88<br>87<br>88<br>87<br>88<br>87<br>88<br>87<br>88<br>87<br>88<br>87<br>88<br>87<br>88<br>87<br>88<br>88 |
| Notes                                                                                                                                                                                                                                          | <br>;           |            | <u> </u>                  | -      | •         |                                                    |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |                       |             | -                                                                                                                             | - 1                                                                                                                                                                                                                                                                                          |
| GHD                                                                                                                                                                                                                                            | Soil Cla        | assificat  | ions. The GHD Soil Classi | ficati | on is has | ed on Austra                                       | lian Sta    | ndards AS 1726-1993. This log is no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | tintender  | l for de              | otechn      | ical purposes                                                                                                                 |                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                |                 |            |                           | ıcati  | ULISDAS   | eu un Austra                                       | nan Sia     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |                       |             |                                                                                                                               |                                                                                                                                                                                                                                                                                              |
| Drillin                                                                                                                                                                                                                                        | g Abbr          | reviations | š                         |        |           |                                                    |             | Moisture Abbreviations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Consist    | ency /                | Apprev      | lations                                                                                                                       |                                                                                                                                                                                                                                                                                              |

Drilling AbbreviationsMoisture AbbreviationsConsistency AbbreviationsAH-Air Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Concrete Coring,<br/>DC-Diamond Core, FH-Foam Hammer, HA-Hand Auger, HE-Hand Excavation<br/>(shovel), HFA-Hollow Flight Auger, NDD-Non Destructive Drilling, PT-Pushtube,<br/>SD-Sonic Drilling, SFA-Solid Flight Auger, SS-Split Spoon, WB-Wash Bore,<br/>WS-Window SamplerD-Dry, SM-Slightly Moist,<br/>M-Moist, VM-Very Moist,<br/>W-Vet, S-SaturatedGranular Soils<br/>Loose, L-Loose, MD-Medium<br/>Dense, D-Dense, VD - Very<br/>DenseCohesive Soils<br/>Soils, VS-Very<br/>Soft, S-Soft, F-Firm,<br/>ST-Stift, VST-Very Stiff,<br/>H-Hard



#### ENVIRONMENTAL-GROUNDWATER

Page 1 of '

Client Fire & Rescue NSW Project Deniliquin FRNSW Site Investigation Project No. 212558305 Site Deniliquin Airport Location Deniliquin Airport, NSW 2710 Date Drilled 30/11/2016 - 01/12/2016 Drill Co. BG Drilling Co Driller Luke & Joel Rig Type D&B-8D Drill Method Solid Flight Auger Total Depth (m) 16.7 Diameter (mm) 125 Easting, Northing , Grid Ref GDA94\_MGA\_zone\_55 Elevation Collar RL -Logged By Sid Paleri Checked By

| B.C.L                    | <b>No.</b> N                 | /A                     | Ca                                                                                                             | sing          | l                                              |               | Screen                                                                                                                         |                                          |          | Surfa       | ace Comp                      | letion                                                                                                |                |
|--------------------------|------------------------------|------------------------|----------------------------------------------------------------------------------------------------------------|---------------|------------------------------------------------|---------------|--------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|----------|-------------|-------------------------------|-------------------------------------------------------------------------------------------------------|----------------|
| Depth (m)                | Drilling Method              | PID (ppm)              | Sample ID                                                                                                      | Water         | Well Details                                   | Graphic Log   | LITHOLOGICAL DESCRIPTION<br>Soil Type (Classification Group<br>Symbol); Particle Size; Colour;<br>Secondary / Minor Components |                                          | Moisture | Consistency | CC<br>II<br>Odours<br>materia | OMMENTS/<br>DNTAMINANT<br>NDICATORS<br>s, staining, waste<br>Is,separate phase<br>imported fill, ash. | Elevation (m)  |
| -                        | НА                           | <u>(0.1</u> )          | ( <u>MW03_0.1</u> )                                                                                            | 1             |                                                |               | GRASS                                                                                                                          |                                          | D        | D           |                               |                                                                                                       | F              |
|                          |                              | 0.1                    | /MW03_1.0                                                                                                      | -             |                                                | 8X1           | silty SAND, fine, orange- brown (FILL) sandy CLAY, medium plasticity, orange                                                   | e-                                       | D        | F           |                               |                                                                                                       | E -1           |
|                          | SFA                          |                        |                                                                                                                |               |                                                |               | brown with mottled black, fine to mediu<br>sand (FILL)                                                                         | um                                       | D        | F           | -                             |                                                                                                       |                |
| 2                        |                              |                        |                                                                                                                |               |                                                |               | CLAY, medium plasticity, dark brown<br>with mottled red- black, trace fine sand<br>(NATURAL - SOIL)                            |                                          | D        | F           |                               |                                                                                                       | -2<br>         |
| 6                        |                              |                        |                                                                                                                |               |                                                |               |                                                                                                                                |                                          |          |             |                               |                                                                                                       | Ē              |
|                          |                              |                        |                                                                                                                |               |                                                |               | silty CLAY, low to medium plasticity, yellow- brown, trace fine sand                                                           |                                          | D        | F           |                               |                                                                                                       | 6<br>          |
| - 8                      |                              |                        |                                                                                                                |               |                                                |               | (NATURAL - SOIL)                                                                                                               |                                          |          |             |                               |                                                                                                       | 8              |
|                          |                              |                        |                                                                                                                |               |                                                |               |                                                                                                                                |                                          |          |             |                               |                                                                                                       | E              |
| -9<br>-                  |                              |                        |                                                                                                                |               |                                                |               |                                                                                                                                |                                          |          |             |                               |                                                                                                       | 9<br>          |
| - 10                     |                              |                        |                                                                                                                |               |                                                |               |                                                                                                                                |                                          |          |             |                               |                                                                                                       | E -10          |
|                          |                              |                        |                                                                                                                |               |                                                |               | SAND, fine to medium, yellow- brown                                                                                            |                                          | D        | D           |                               |                                                                                                       | Ē              |
| - 11<br>-                |                              |                        |                                                                                                                |               |                                                |               | (NATURAL - SOIL)                                                                                                               |                                          |          |             |                               |                                                                                                       | 11<br>-        |
| - 12                     |                              |                        |                                                                                                                |               |                                                |               |                                                                                                                                |                                          |          |             |                               |                                                                                                       | -<br>12        |
| - 13                     |                              |                        |                                                                                                                |               |                                                |               |                                                                                                                                |                                          |          |             |                               |                                                                                                       | 13             |
| 14                       |                              |                        |                                                                                                                |               |                                                |               |                                                                                                                                |                                          |          |             |                               |                                                                                                       | È "            |
|                          |                              |                        |                                                                                                                |               |                                                |               |                                                                                                                                |                                          |          |             |                               |                                                                                                       | 14<br>         |
| - 15                     |                              |                        |                                                                                                                |               |                                                |               |                                                                                                                                |                                          |          |             |                               |                                                                                                       | 15             |
| -<br>- 16                |                              |                        |                                                                                                                |               |                                                |               |                                                                                                                                |                                          |          |             |                               |                                                                                                       | -<br>16        |
| _<br>17                  |                              |                        |                                                                                                                | ┢             |                                                |               | Termination Depth at:16.70 m. Boreho                                                                                           | le                                       |          |             |                               |                                                                                                       | <u>-</u><br>17 |
|                          |                              |                        |                                                                                                                |               |                                                |               | collapse.                                                                                                                      | -                                        |          |             |                               |                                                                                                       | È''            |
| -<br>- 18<br>-           |                              |                        |                                                                                                                |               |                                                |               |                                                                                                                                |                                          |          |             |                               |                                                                                                       | -<br>18        |
| -<br>-<br>- 19           |                              |                        |                                                                                                                |               |                                                |               |                                                                                                                                |                                          |          |             |                               |                                                                                                       | -<br>19        |
|                          |                              |                        |                                                                                                                |               |                                                |               |                                                                                                                                |                                          |          |             |                               |                                                                                                       |                |
|                          |                              |                        |                                                                                                                |               |                                                | -             | nmissioned following successful installa<br>Idards AS 1726-1993. This log is not in                                            |                                          |          |             | ical purpc                    | ses.                                                                                                  | <u>F</u>       |
| Drillin                  | g Abbi                       | reviation              | 5                                                                                                              |               |                                                |               | Moisture Abbreviations C                                                                                                       | Consist                                  | ency     | Abbrev      | riations                      |                                                                                                       |                |
| DC-Di<br>(shove<br>SD-So | amono<br>el), HF/<br>onic Dr | d Core, Fl<br>A-Hollow | -Air Rotary, BE-Bucket Exc<br>H-Foam Hammer, HA-Hanc<br>Flight Auger, NDD-Non De<br>A-Solid Flight Auger, SS-S | d Au<br>strue | ger, HE-Hand Excava<br>ctive Drilling, PT-Push | tion<br>tube, | M-Moist, VM-Very Moist, L<br>W-Wet, S-Saturated D                                                                              | Granula<br>.oose, L<br>Dense, [<br>Dense | -Loos    | se, MD-     | Medium                        | Cohesive Soils V<br>Soft, S-Soft, F-Firm,<br>ST-Stiff, VST-Very S<br>H-Hard                           | , -            |



#### ENVIRONMENTAL-GROUNDWATER

Page 1 of '

Client Fire & Rescue NSW Project Deniliquin FRNSW Site Investigation Project No. 212558305 Site Deniliquin Airport Location Deniliquin Airport, NSW 2710 Date Drilled 15/12/2016 - 15/12/2016 Drill Co. BG Drilling Co Driller Matt & Randall Rig Type D&B-8D Drill Method Solid Flight Auger Total Depth (m) 18 Diameter (mm) 125 Easting, Northing 313776.952, 6063695.994 Grid Ref GDA94\_MGA\_zone\_55 Elevation 92.89 Collar RL 92.81 Logged By Alice Walker Checked By

| B.C.L                                | <b>No.</b> N/   | /A                     | Ca          | sing   | PVC (0    | Class 18)           |             | Screen 0.5mm Slotted PV                                                                                                                            | C (Class 1             | 8)       | Surfa       | ace Completion Gatic                                                                                                          |                            |
|--------------------------------------|-----------------|------------------------|-------------|--------|-----------|---------------------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|----------|-------------|-------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| Depth (m)                            | Drilling Method | PID (ppm)              | Sample ID   | Water  |           | Well Details        | Graphic Log | LITHOLOGICAL DESCRIPTI<br>Soil Type (Classification Gro<br>Symbol); Particle Size; Colo<br>Secondary / Minor Compone                               | oup<br>our;            | Moisture | Consistency | COMMENTS/<br>CONTAMINANT<br>INDICATORS<br>Odours, staining, waste<br>materials,separate phase<br>liquids, imported fill, ash. | Elevation (m)              |
| 1                                    | SFA             |                        |             |        |           |                     |             | CLAY, high plasticity, dark brown (F                                                                                                               |                        | SM       | VST         |                                                                                                                               | 92                         |
| - 3<br>                              |                 |                        |             |        |           |                     |             | CLAY, medium to high plasticity, tar<br>brown, trace gravel (NATURAL - S                                                                           |                        | SM       | Н           |                                                                                                                               | 90<br>89<br>89<br>88<br>88 |
|                                      |                 |                        |             |        |           | Grout               |             | CLAY, medium to high plasticity, tar<br>brown, trace coarse gravel (NATUF<br>SOIL)                                                                 |                        | D        | Н           |                                                                                                                               | 87<br>86<br>86<br>85       |
| 9                                    |                 |                        |             |        |           |                     |             | CLAY, medium plasticity, pale grey-<br>brown (NATURAL - SOIL)                                                                                      | -                      | D        | S           |                                                                                                                               | - 84<br>- 84<br>- 83       |
| 10<br>10<br>10<br>10<br>11           |                 |                        |             |        |           |                     |             | CLAY, low plasticity, grey- brown<br>(NATURAL - SOIL)                                                                                              |                        | SM       | S           |                                                                                                                               | 82                         |
| 12<br>12                             |                 |                        |             |        |           | Bentonite           |             | CLAY, medium to high plasticity, or<br>brown, some fine sand (NATURAL<br>SOIL)                                                                     | ange-<br>-             | SM       | S           |                                                                                                                               | 81                         |
| - 13<br>- 13<br>- 14                 |                 |                        | /MW03B_13.8 | 4      |           |                     |             | CLAY, medium to high plasticity, or<br>brown, some medium sand (NATU<br>SOIL)                                                                      | RAL -                  | SM       | S           |                                                                                                                               | - 80<br>- 79               |
| L<br>15                              |                 |                        | /MW03B_15.1 | Į₽     |           | Sand                |             | sandy CLAY, low to medium plastic<br>pale brown, angular, fine to coarse<br>- poorly graded sand (NATURAL - S<br>sandy CLAY, low to medium plastic | ,<br>OIL)              | SM<br>W  | s           |                                                                                                                               | 78                         |
| 16<br>17                             |                 |                        |             |        |           |                     |             | pale brown, angular, fine to coarse<br>poorly graded sand (NATURAL - S                                                                             |                        |          |             |                                                                                                                               | 77                         |
| E                                    |                 |                        |             |        |           | Wall                |             |                                                                                                                                                    |                        |          |             |                                                                                                                               | 75                         |
| - 18<br><br><br><br><br><br><br><br> |                 |                        |             |        |           | <del>. онаръе</del> |             | Termination Depth at:18.00 m. Targ<br>depth achieved.                                                                                              | let                    |          |             |                                                                                                                               | 74                         |
| Notes                                | 5               |                        |             |        |           |                     | -           |                                                                                                                                                    |                        | -        |             |                                                                                                                               |                            |
|                                      |                 | assificat<br>eviation: |             | ficati | on is bas | ed on Austra        | lian Sta    | ndards AS 1726-1993. This log is no<br>Moisture Abbreviations                                                                                      | ot intended<br>Consist |          |             |                                                                                                                               |                            |

**Drilling Abbreviations** Moisture Abbreviations **Consistency Abbreviations** D-Dry, SM-Slightly Moist, M-Moist, VM-Very Moist, AH-Air Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Concrete Coring, Granular Soils VL-Very Cohesive Soils VS-Very Soft, S-Soft, F-Firm, ST-Stiff, VST-Very Stiff, DC-Diamond Core, FH-Foam Hammer, HA-Hand Auger, HE-Hand Excavation Loose, L-Loose, MD-Medium W-Wet, S-Saturated (shovel), HFA-Hollow Flight Auger, NDD-Non Destructive Drilling, PT-Pushtube, Dense, D-Dense, VD - Very SD-Sonic Drilling, SFA-Solid Flight Auger, SS-Split Spoon, WB-Wash Bore, Dense H-Hard WS-Window Sampler



#### ENVIRONMENTAL-SOIL BORE

Page 1 of '

Client Fire & Rescue NSW Project Deniliquin FRNSW Site Investigation Project No. 212558305 Site Deniliquin Airport Location Deniliquin Airport, NSW 2710 Date Drilled 29/11/2016 - 30/11/2016 Drill Co. BG Drilling Co Driller Luke & Joel Rig Type D&B-8D Drill Method CC, HA, PT & SFA Total Depth (m) 5.1 Diameter (mm) 125 Easting Northing Grid Ref GDA94\_MGA\_zone\_55 Elevation Logged By Sid Paleri Checked By

| Depth (m)       | <b>Drilling Method</b>        | PID (ppm)                           | Sample ID                                                                                                                   | Water           | Graphic Log            | Soil Type (Cla             | OLOGICAL DESCRIPTION<br>ssification Group Symbol); Particle<br>r; Secondary / Minor Components. | Moisture  | Consistency                    | COMMENTS/<br>CONTAMINANT<br>INDICATORS<br>Odours, staining, w<br>materials,separate<br>liquids, imported fill | vaste<br>phase                                    |
|-----------------|-------------------------------|-------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-----------------|------------------------|----------------------------|-------------------------------------------------------------------------------------------------|-----------|--------------------------------|---------------------------------------------------------------------------------------------------------------|---------------------------------------------------|
|                 |                               | <u>/0.4</u>                         | /SB01_0.1                                                                                                                   |                 | $\bigotimes$           |                            | nedium plasticity, dark red- brown,                                                             | .: D      | ST                             |                                                                                                               | E                                                 |
| 0.5             |                               | 0.2                                 | /SB01_0.5                                                                                                                   |                 |                        | (FILL)                     | ium sand, fine to medium gravel                                                                 | .: D      | ST                             | -                                                                                                             | Ē                                                 |
| - 0.5           |                               |                                     |                                                                                                                             |                 | $\bigotimes$           | trace fine to med          | dium plasticity, dark grey- brown,<br>ium sand (possible FILL)                                  |           |                                |                                                                                                               |                                                   |
|                 |                               | /0.2                                | SB01_1.0 (FD02, FS02)                                                                                                       |                 |                        | CLAY, medium p             | lasticity, brown with mottled orange-<br>sand (possible FILL)                                   | D         | F                              | -                                                                                                             | Ē                                                 |
| 1               |                               | <u>,</u>                            | <u> </u>                                                                                                                    |                 | $\bigotimes$           | Diack, trace line :        |                                                                                                 |           |                                |                                                                                                               |                                                   |
|                 | PT                            |                                     |                                                                                                                             |                 | $\bigotimes$           |                            |                                                                                                 |           |                                |                                                                                                               | Ē                                                 |
| • 1.5           |                               |                                     |                                                                                                                             |                 | $\bigotimes$           |                            |                                                                                                 |           |                                |                                                                                                               | E -1                                              |
|                 |                               |                                     |                                                                                                                             |                 |                        |                            | dium plasticity, brown with mottled                                                             |           | F                              |                                                                                                               | Ē                                                 |
| • 2             |                               | /0.2                                | /SB01_2.0                                                                                                                   |                 | $\bigotimes$           | orange- black, fi          | ne to medium sand (possible FILL)                                                               |           |                                |                                                                                                               | E-2                                               |
|                 |                               |                                     |                                                                                                                             |                 | $\bigotimes$           |                            |                                                                                                 |           |                                |                                                                                                               | Ē                                                 |
| 2.5             |                               |                                     |                                                                                                                             |                 | $\bigotimes$           |                            |                                                                                                 |           |                                |                                                                                                               | Ē-2                                               |
|                 | SFA                           |                                     |                                                                                                                             |                 | $\bigotimes$           |                            |                                                                                                 |           |                                |                                                                                                               | Ē                                                 |
| 3               |                               | /0.1                                | /SB01_3.0                                                                                                                   |                 | $\bigotimes$           |                            |                                                                                                 |           |                                |                                                                                                               | E-3                                               |
|                 |                               |                                     |                                                                                                                             |                 | $\bigotimes$           |                            |                                                                                                 |           |                                |                                                                                                               | Ē                                                 |
| 3.5             |                               |                                     |                                                                                                                             |                 |                        |                            | vn with mottled orange, occasional                                                              | D         | Н                              | _                                                                                                             | Ē-3                                               |
|                 |                               |                                     |                                                                                                                             |                 |                        | harder sandy se            | ctions (NATURAL - SOIL)                                                                         |           |                                |                                                                                                               | Ē                                                 |
| 4               |                               | /0.1                                | /SB01_4.0                                                                                                                   |                 |                        |                            |                                                                                                 |           |                                |                                                                                                               | E-4                                               |
|                 |                               |                                     |                                                                                                                             |                 |                        |                            |                                                                                                 |           |                                |                                                                                                               | Ē                                                 |
| 4.5             |                               |                                     |                                                                                                                             |                 |                        |                            |                                                                                                 |           |                                |                                                                                                               | Ē-4                                               |
|                 |                               |                                     |                                                                                                                             |                 |                        |                            |                                                                                                 |           |                                |                                                                                                               | Ē                                                 |
| 5               |                               | /0.1                                | /SB01_5.0                                                                                                                   |                 |                        |                            |                                                                                                 |           |                                |                                                                                                               | E-                                                |
|                 |                               |                                     |                                                                                                                             |                 |                        | Termination Dep            | th at:5.10 m. Target depth achieved.                                                            |           |                                |                                                                                                               | Ē                                                 |
| 5.5             |                               |                                     |                                                                                                                             |                 |                        |                            |                                                                                                 |           |                                |                                                                                                               | E-t                                               |
|                 |                               |                                     |                                                                                                                             |                 |                        |                            |                                                                                                 |           |                                |                                                                                                               |                                                   |
|                 |                               |                                     |                                                                                                                             |                 |                        |                            |                                                                                                 |           |                                |                                                                                                               | Ē                                                 |
| lotes           | Went                          | to solid fli                        | ight auger at 2.8m due to hare                                                                                              | dness           | ofclay                 |                            |                                                                                                 |           |                                |                                                                                                               |                                                   |
| SHD S           | Soil Cla                      | ssificatio                          | ons The GHD Soil Classificat                                                                                                | ion is          | based or               | n Australian Stand         | ards AS 1726-1993. This log is not inte                                                         | nded fo   | geotech                        | nnical purposes.                                                                                              |                                                   |
|                 |                               | eviations                           |                                                                                                                             |                 |                        |                            |                                                                                                 |           | -                              | viations                                                                                                      |                                                   |
| )C-Dia<br>shove | amond<br>el), HFA<br>onic Dri | Core, FH<br>-Hollow F<br>Iling, SFA | Air Rotary, BE-Bucket Excava<br>I-Foam Hammer, HA-Hand Au<br>Flight Auger, NDD-Non Destru<br>v-Solid Flight Auger, SS-Split | uger,<br>Ictive | HE-Hand<br>Drilling, F | Excavation<br>PT-Pushtube, | M-Moist, VM-Very Moist, Loo<br>W-Wet, S-Saturated De                                            | ose, L-Lo | oils VL<br>bose, MD<br>ense,VD | -Medium Soft, S-Sof                                                                                           | <b>Soils</b> VS-∨<br>t, F-Firm,<br>ST-Very Stiff, |



## **BOREHOLE LOG**

#### ENVIRONMENTAL-SOIL BORE

Page 1 of '

| Client Fire & Rescue NSW                    |
|---------------------------------------------|
| Project Deniliquin FRNSW Site Investigation |
| Project No. 212558305                       |
| Site Deniliquin Airport                     |
| Location Deniliquin Airport, NSW 2710       |
| Date Drilled 29/11/2016 - 29/11/2016        |
|                                             |

Drill Co. BG Drilling Co Driller Luke & Joel Rig Type D&B-8D Drill Method CC & HA Total Depth (m) 1.1 Diameter (mm) 100

Easting Northing Grid Ref GDA94\_MGA\_zone\_55 Elevation Logged By Sid Paleri Checked By

| Depth (m)               | Drilling Method          | (mdd) Old                           | Sample ID                                                                                                                  | Water           | Graphic Log            | Soil Type (Cla<br>Size; Colou   | HOLOGICAL DESCRIPTION<br>assification Group Symbol); Partic<br>r; Secondary / Minor Components. | :le      | Moisture                | Consistency             | CO<br>IN<br>Odours<br>materials | DMMENTS/<br>NTAMINANT<br>DICATORS<br>, staining, waste<br>s,separate phase<br>mported fill, ash. | Elevation (m)                                          |
|-------------------------|--------------------------|-------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-----------------|------------------------|---------------------------------|-------------------------------------------------------------------------------------------------|----------|-------------------------|-------------------------|---------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------|
|                         |                          | <u>/0.2</u>                         | /SB02_0.1                                                                                                                  |                 | $\bigotimes$           | ASPHALT<br>dayey SAND, fir      | ne to medium, pale brown (possible                                                              |          | D                       | D                       |                                 |                                                                                                  | Ē                                                      |
| 0.5                     |                          | /0.4                                | /SB02_0.5                                                                                                                  |                 |                        | FILL)                           | blasticity, dark black- brown, rootlets                                                         |          | D                       | F                       | very weal                       | < odour                                                                                          | -0.5                                                   |
| 1                       |                          | 0.3                                 | /SB02_1.0                                                                                                                  | -               |                        | CLAY, medium p<br>(NATURAL - SO | plasticity, brown with mottled black<br>PIL)                                                    |          | D                       | F                       |                                 |                                                                                                  |                                                        |
|                         |                          |                                     |                                                                                                                            |                 |                        | Termination Dep                 | ιth at:1.10 m. Target depth achieved.                                                           |          |                         |                         |                                 |                                                                                                  | -1.5<br>-2<br>-2.5<br>-3<br>-3.5<br>-4<br>-4.5<br>-5.5 |
| -<br>Notes              |                          |                                     |                                                                                                                            |                 |                        |                                 |                                                                                                 |          |                         |                         |                                 |                                                                                                  | <u>F</u>                                               |
|                         |                          | Issificati                          | ons The GHD Soil Classifica                                                                                                | tion is         | based o                | n Australian Stand              | lards AS 1726-1993. This log is not i                                                           | intendeo | d for a                 | eotech                  | nical purpo                     | ses.                                                                                             |                                                        |
|                         |                          | eviations                           |                                                                                                                            |                 |                        |                                 | -                                                                                               | Consist  |                         |                         |                                 |                                                                                                  |                                                        |
| AH-A<br>DC-Di<br>(shove | ir Ham<br>amond<br>amond | nmer, AR-<br>Core, FH<br>A-Hollow I | Air Rotary, BE-Bucket Excava<br>I-Foam Hammer, HA-Hand A<br>Flight Auger, NDD-Non Destru<br>A-Solid Flight Auger, SS-Split | uger,<br>uctive | HE-Hand<br>Drilling, F | Excavation                      | D-Dry, SM-Slightly Moist,<br>M-Moist, VM-Very Moist,<br>W-Wet, S-Saturated                      | Granula  | a <b>r Soi</b> l<br>Loo | <b>ls</b> VL<br>se, MD- | -Very<br>Medium                 | Cohesive Soils<br>Soft, S-Soft, F-Firr<br>ST-Stiff, VST-Very<br>H-Hard                           | n, ·                                                   |



#### ENVIRONMENTAL-SOIL BORE

Page 1 of '

Client Fire & Rescue NSW Project Deniliquin FRNSW Site Investigation Project No. 212558305 Site Deniliquin Airport Location Deniliquin Airport, NSW 2710 Date Drilled 29/11/2016 - 29/11/2016 Drill Co. BG Drilling Co Driller Luke & Joel Rig Type N/A Drill Method Hand Auger Total Depth (m) 1.2 Diameter (mm) 75 Easting Northing Grid Ref GDA94\_MGA\_zone\_55 Elevation Logged By Sid Paleri Checked By

| Depth (m)       | <b>Drilling Method</b> | PID (ppm)             | Sample ID                                                                                                                  | Water           | Graphic Log                               | Soil Type (Cla             | IOLOGICAL DESCRIPTION<br>Issification Group Symbol); Partic<br>r; Secondary / Minor Components. |        | Moisture           | Consistency               | COI<br>INI<br>Odours,<br>materials | DMMENTS/<br>NTAMINANT<br>DICATORS<br>staining, waste<br>s,separate phase<br>mported fill, ash. | Elevation (m) |
|-----------------|------------------------|-----------------------|----------------------------------------------------------------------------------------------------------------------------|-----------------|-------------------------------------------|----------------------------|-------------------------------------------------------------------------------------------------|--------|--------------------|---------------------------|------------------------------------|------------------------------------------------------------------------------------------------|---------------|
| Ē               | HA                     | <u>Z0.1</u>           | /sbo3_0.1                                                                                                                  | •               | $\bigotimes$                              | SAND, fine to me<br>(FILL) | edium, orange- brown, trace clay                                                                |        | D                  | L                         |                                    |                                                                                                | Ē             |
|                 |                        |                       |                                                                                                                            |                 | $\langle \rangle \rangle \rangle \rangle$ | , ,                        | lasticity, brown with mottled orange                                                            |        | D                  | S                         |                                    |                                                                                                | Ē             |
| 0.5             |                        | 0.2                   | /SB03_0.5                                                                                                                  | -               |                                           | (NATURAL - SO              | L)                                                                                              |        | D                  | 3                         |                                    |                                                                                                | E -0.5        |
| Ξ               |                        |                       |                                                                                                                            |                 |                                           |                            |                                                                                                 |        | _                  | _                         |                                    |                                                                                                | Ē             |
| Ē               |                        |                       |                                                                                                                            |                 |                                           | orange (NATUR              | lasticity, pale brown with mottled<br>AL - SOIL)                                                |        | D                  | F                         |                                    |                                                                                                | Ē             |
| 0.5             |                        | /0.3                  | /SB03_1.0                                                                                                                  | -               |                                           |                            |                                                                                                 |        |                    |                           |                                    |                                                                                                | E -1          |
| -               |                        |                       |                                                                                                                            |                 | (/////                                    | Termination Dep            | th at:1.20 m. Target depth achieved.                                                            |        |                    |                           |                                    |                                                                                                | <u>-</u>      |
| 15              |                        |                       |                                                                                                                            |                 |                                           |                            |                                                                                                 |        |                    |                           |                                    |                                                                                                | E -1.5        |
| =               |                        |                       |                                                                                                                            |                 |                                           |                            |                                                                                                 |        |                    |                           |                                    |                                                                                                | Ē             |
| Ē               |                        |                       |                                                                                                                            |                 |                                           |                            |                                                                                                 |        |                    |                           |                                    |                                                                                                | -2            |
| 2               |                        |                       |                                                                                                                            |                 |                                           |                            |                                                                                                 |        |                    |                           |                                    |                                                                                                | <u>-</u> -2   |
| 1.5<br>2        |                        |                       |                                                                                                                            |                 |                                           |                            |                                                                                                 |        |                    |                           |                                    |                                                                                                | Ē             |
|                 |                        |                       |                                                                                                                            |                 |                                           |                            |                                                                                                 |        |                    |                           |                                    |                                                                                                | Ē             |
| 2.5             |                        |                       |                                                                                                                            |                 |                                           |                            |                                                                                                 |        |                    |                           |                                    |                                                                                                | E -2.5        |
|                 |                        |                       |                                                                                                                            |                 |                                           |                            |                                                                                                 |        |                    |                           |                                    |                                                                                                | Ē             |
| 2.5             |                        |                       |                                                                                                                            |                 |                                           |                            |                                                                                                 |        |                    |                           |                                    |                                                                                                | E -3          |
|                 |                        |                       |                                                                                                                            |                 |                                           |                            |                                                                                                 |        |                    |                           |                                    |                                                                                                | Ē             |
| Ē               |                        |                       |                                                                                                                            |                 |                                           |                            |                                                                                                 |        |                    |                           |                                    |                                                                                                | Ē             |
| 3.5             |                        |                       |                                                                                                                            |                 |                                           |                            |                                                                                                 |        |                    |                           |                                    |                                                                                                | 3.5           |
| Ē               |                        |                       |                                                                                                                            |                 |                                           |                            |                                                                                                 |        |                    |                           |                                    |                                                                                                | Ē             |
| Ē               |                        |                       |                                                                                                                            |                 |                                           |                            |                                                                                                 |        |                    |                           |                                    |                                                                                                | Ē             |
| 3.5             |                        |                       |                                                                                                                            |                 |                                           |                            |                                                                                                 |        |                    |                           |                                    |                                                                                                | E -4          |
| E               |                        |                       |                                                                                                                            |                 |                                           |                            |                                                                                                 |        |                    |                           |                                    |                                                                                                | Ē             |
| 4.5             |                        |                       |                                                                                                                            |                 |                                           |                            |                                                                                                 |        |                    |                           |                                    |                                                                                                | E -4.5        |
| 4.5             |                        |                       |                                                                                                                            |                 |                                           |                            |                                                                                                 |        |                    |                           |                                    |                                                                                                | Ē             |
| E               |                        |                       |                                                                                                                            |                 |                                           |                            |                                                                                                 |        |                    |                           |                                    |                                                                                                | Ē             |
| 5               |                        |                       |                                                                                                                            |                 |                                           |                            |                                                                                                 |        |                    |                           |                                    |                                                                                                |               |
|                 |                        |                       |                                                                                                                            |                 |                                           |                            |                                                                                                 |        |                    |                           |                                    |                                                                                                | Ē             |
| 5.5             |                        |                       |                                                                                                                            |                 |                                           |                            |                                                                                                 |        |                    |                           |                                    |                                                                                                | E -5.5        |
| -               |                        |                       |                                                                                                                            |                 |                                           |                            |                                                                                                 |        |                    |                           |                                    |                                                                                                | Ē             |
|                 |                        |                       |                                                                                                                            |                 |                                           |                            |                                                                                                 |        |                    |                           |                                    |                                                                                                | Ē             |
| -<br>Notes      |                        |                       |                                                                                                                            |                 |                                           |                            |                                                                                                 |        |                    |                           |                                    |                                                                                                | F             |
|                 |                        | Issificati            | ons The GHD Soil Classifica                                                                                                | tion is         | based or                                  | a Australian Stand         | ards AS 1726-1993. This log is not i                                                            | intend | ed for c           | leotech                   | nical purpo                        | ses                                                                                            |               |
|                 |                        | eviations             |                                                                                                                            |                 | 24304 01                                  |                            | <u> </u>                                                                                        |        |                    |                           | viations                           |                                                                                                |               |
| DC-Di<br>(shove | amond<br>el), HFA      | Core, FH<br>-Hollow I | Air Rotary, BE-Bucket Excava<br>I-Foam Hammer, HA-Hand A<br>Tlight Auger, NDD-Non Destru<br>A-Solid Flight Auger, SS-Split | uger,<br>uctive | HE-Hand<br>Drilling, F                    | Excavation<br>PT-Pushtube, | M-Moist, VM-Very Moist,<br>W-Wet, S-Saturated                                                   | Loose  | , L-Loo<br>, D-Dei | ls VL<br>se, MD<br>nse,VD | -Medium                            | Cohesive Soils<br>Soft, S-Soft, F-Firm<br>ST-Stiff, VST-Very<br>H-Hard                         | ٦,            |



#### ENVIRONMENTAL-SOIL BORE

Page 1 of '

Client Fire & Rescue NSW Project Deniliquin FRNSW Site Investigation Project No. 212558305 Site Deniliquin Airport Location Deniliquin Airport, NSW 2710 Date Drilled 29/11/2016 - 29/11/2016 Drill Co. BG Drilling Co Driller Luke & Joel Rig Type D&B-8D Drill Method CC, PT & SFA Total Depth (m) 5.1 Diameter (mm) 125 Easting Northing Grid Ref GDA94\_MGA\_zone\_55 Elevation Logged By Sid Paleri Checked By

| Depth (m)  | Drilling Method | PID (ppm)   | Sample ID                    | Water   | Graphic Log | Soil Type (Cla             | IOLOGICAL DESCRIPTION<br>Issification Group Symbol); Particle<br>r; Secondary / Minor Components. | Moisture     | Consistency | COI<br>INI<br>Odours,<br>materials | OMMENTS/<br>NTAMINANT<br>DICATORS<br>sstaining, waste<br>s,separate phase<br>mported fill, ash. | Elevation (m)   |
|------------|-----------------|-------------|------------------------------|---------|-------------|----------------------------|---------------------------------------------------------------------------------------------------|--------------|-------------|------------------------------------|-------------------------------------------------------------------------------------------------|-----------------|
|            | CC<br>PT        | /0.2        | /SB04_0.15                   |         |             | CONCRETE<br>CLAY, medium p | lasticity, dark red- brown, trace fine                                                            |              | S           | -                                  |                                                                                                 |                 |
|            |                 |             |                              |         |             | - sand                     | lasticity, yellow- brown, trace fine                                                              |              | S           | -                                  |                                                                                                 | Ē               |
| - 0.5<br>- |                 | /0.1        | /SB04_0.5                    |         |             | sand                       |                                                                                                   |              |             |                                    |                                                                                                 | E -0.5          |
|            |                 |             |                              |         |             |                            |                                                                                                   |              |             |                                    |                                                                                                 | E               |
| E 1        |                 | /0.1        | /SB04_1.0                    |         |             |                            |                                                                                                   |              |             |                                    |                                                                                                 | E -1            |
|            |                 |             |                              |         |             |                            |                                                                                                   |              |             |                                    |                                                                                                 | E               |
|            |                 |             |                              |         |             |                            |                                                                                                   |              |             |                                    |                                                                                                 | Ē               |
| - 1.5<br>- |                 |             |                              |         |             |                            |                                                                                                   |              |             |                                    |                                                                                                 | 1.5<br>-        |
| 0.5        |                 |             |                              |         |             |                            |                                                                                                   |              |             |                                    |                                                                                                 | Ē               |
| E 2        |                 | /0.2 \      | /SB04_2.0 (FD03, FS03)       |         |             |                            |                                                                                                   |              |             |                                    |                                                                                                 | E -2            |
|            |                 |             |                              |         |             |                            |                                                                                                   |              |             |                                    |                                                                                                 | E               |
| 2.5        | SFA             | -           |                              |         |             |                            | lasticity, yellow- brown, trace fine                                                              |              | F           | -                                  |                                                                                                 | E<br>-2.5       |
| Ē          |                 |             |                              |         |             | sand                       |                                                                                                   |              |             |                                    |                                                                                                 | Ē               |
|            |                 |             |                              |         |             |                            |                                                                                                   |              |             |                                    |                                                                                                 | E               |
| - 3<br>-   |                 | /0.1 \      | /SB04_3.0                    |         |             |                            |                                                                                                   |              |             |                                    |                                                                                                 | E -3            |
|            |                 |             |                              |         |             |                            |                                                                                                   |              |             |                                    |                                                                                                 | Ē               |
| 3.5        |                 |             |                              |         |             |                            |                                                                                                   |              |             |                                    |                                                                                                 | E -3.5          |
|            |                 |             |                              |         |             |                            |                                                                                                   |              |             |                                    |                                                                                                 | E               |
| E.         |                 | /0.1        | /SB04 4.0                    |         |             |                            |                                                                                                   |              |             |                                    |                                                                                                 | Ê.              |
| 4<br>E     |                 |             | <u> </u>                     |         |             | CLAY medium r              | lasticity, yellow- brown with mottled                                                             |              | н           | -                                  |                                                                                                 | Ē <sup>-4</sup> |
| 2.5<br>    |                 |             |                              |         |             |                            | e sand (NATURAL - SOIL)                                                                           |              |             |                                    |                                                                                                 | Ē               |
| 4.5        |                 |             |                              |         |             |                            |                                                                                                   |              |             |                                    |                                                                                                 | -4.5            |
| E          |                 |             |                              |         |             |                            |                                                                                                   |              |             |                                    |                                                                                                 | Ē               |
| 5          |                 | /0.1        | /SB04_5.0                    |         |             |                            |                                                                                                   |              |             |                                    |                                                                                                 | -5              |
| Ē          |                 |             |                              |         | //////      | Termination Dep            | th at:5.10 m. Target depth achieved.                                                              |              |             |                                    |                                                                                                 | Ē               |
| Ē          |                 |             |                              |         |             |                            |                                                                                                   |              |             |                                    |                                                                                                 | Ē               |
| - 5.5<br>- |                 |             |                              |         |             |                            |                                                                                                   |              |             |                                    |                                                                                                 | 5.5<br>E        |
| 5.5        |                 |             |                              |         |             |                            |                                                                                                   |              |             |                                    |                                                                                                 | Ē               |
|            |                 |             |                              |         |             |                            |                                                                                                   |              |             |                                    |                                                                                                 | F               |
| Notes      | ;               |             |                              |         |             |                            |                                                                                                   |              |             |                                    |                                                                                                 |                 |
| GHD        | Soil Cla        | Issificatio | ons The GHD Soil Classificat | tion is | based or    | n Australian Stand         | ards AS 1726-1993. This log is not in                                                             | tended for g | geotech     | nical purpo                        | ses.                                                                                            |                 |
|            |                 | eviations   |                              |         |             |                            |                                                                                                   | onsistency   |             |                                    |                                                                                                 |                 |
| AH-A       | Air Ham         | mer, AR-    | Air Rotary, BE-Bucket Excava | tion,   | CC-Conc     | rete Coring,               | D-Dry, SM-Slightly Moist, G                                                                       | ranular So   | ils VL      | -Very                              | Cohesive Soils                                                                                  | VS-Very         |

 AH-Air Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Concrete Coring,
 D-Dry, SM-Slightly Moist,
 Granular Soils
 VL-Very

 DC-Diamond Core, FH-Foam Hammer, HA-Hand Auger, HE-Hand Excavation
 M-Moist, VM-Very Moist,
 W-Moist, VM-Very Moist,
 Domese, D-Dense, VD-Very
 Soft, S-Soft, F-Firm,

 SD-Sonic Drilling, SFA-Solid Flight Auger, SS-Split Spoon, WB-Wash Bore,
 WS-Window Sampler
 Granular Soils
 VL-Very
 Soft, S-Soft, F-Firm,



#### ENVIRONMENTAL-SOIL BORE

Page 1 of '

| Projec<br>Projec<br>Site E<br>Locati | t Deni<br>t <b>No.</b> 2<br>Deniliqu<br><b>on</b> De | 21255830<br>iin Airpor<br>niliquin A | NSW Site Investigation<br>05                                                                                         |                 |                        | Driller Luke<br>Rig Type        | l/A<br>d Hand Auger<br>⊨ (m) 1.1                                                                |        | Elevat   | ng<br>aefGD<br>tion<br>dByS | A94_MGA<br>Bid Paleri          | _zone_55                                                                                          |                                  |
|--------------------------------------|------------------------------------------------------|--------------------------------------|----------------------------------------------------------------------------------------------------------------------|-----------------|------------------------|---------------------------------|-------------------------------------------------------------------------------------------------|--------|----------|-----------------------------|--------------------------------|---------------------------------------------------------------------------------------------------|----------------------------------|
| Depth (m)                            | <b>Drilling Method</b>                               | (mqq) OI9                            | Sample ID                                                                                                            | Water           | Graphic Log            | Soil Type (Cla                  | IOLOGICAL DESCRIPTION<br>Issification Group Symbol); Partic<br>r; Secondary / Minor Components. |        | Moisture | Consistency                 | CO<br>IN<br>Odours<br>material | DMMENTS/<br>NTAMINANT<br>DICATORS<br>, staining, waste<br>s,separate phase<br>imported fill, ash. | Elevation (m)                    |
|                                      | HA                                                   | <u> </u>                             | /SB05_0.1                                                                                                            |                 |                        | CLAY, medium p<br>(NATURAL - SO | lasticity, dark brown, some rootlets<br>IL)                                                     |        | D        | F                           |                                |                                                                                                   | Ē                                |
| 0.5                                  |                                                      | <u></u>                              | /SB05_0.5                                                                                                            |                 |                        | CI AY medium r                  | lasticity, dark brown and pale grey,                                                            |        | D        | F                           |                                |                                                                                                   | -0.5                             |
| _                                    |                                                      | /0.1                                 | /SB05_1.0                                                                                                            |                 |                        | some rootlets (N                | ATURAL - SOIL)                                                                                  |        | -        |                             |                                |                                                                                                   |                                  |
| 1.5                                  |                                                      |                                      |                                                                                                                      |                 |                        | Termination Dep                 | th at:1.10 m. Target depth achieved.                                                            |        |          |                             |                                |                                                                                                   | -1.5                             |
| -2                                   |                                                      |                                      |                                                                                                                      |                 |                        |                                 |                                                                                                 |        |          |                             |                                |                                                                                                   | -1.5<br>-2<br>-2.5<br>-3<br>-3.5 |
| 2.5                                  |                                                      |                                      |                                                                                                                      |                 |                        |                                 |                                                                                                 |        |          |                             |                                |                                                                                                   | -2.5                             |
| - 3                                  |                                                      |                                      |                                                                                                                      |                 |                        |                                 |                                                                                                 |        |          |                             |                                |                                                                                                   | 3                                |
| - 3.5                                |                                                      |                                      |                                                                                                                      |                 |                        |                                 |                                                                                                 |        |          |                             |                                |                                                                                                   | -3.5                             |
| 4                                    |                                                      |                                      |                                                                                                                      |                 |                        |                                 |                                                                                                 |        |          |                             |                                |                                                                                                   | F, I                             |
| 4.5                                  |                                                      |                                      |                                                                                                                      |                 |                        |                                 |                                                                                                 |        |          |                             |                                |                                                                                                   | -4.5                             |
| 5                                    |                                                      |                                      |                                                                                                                      |                 |                        |                                 |                                                                                                 |        |          |                             |                                |                                                                                                   | -5                               |
| 5.5                                  |                                                      |                                      |                                                                                                                      |                 |                        |                                 |                                                                                                 |        |          |                             |                                |                                                                                                   | -4.5                             |
|                                      |                                                      |                                      |                                                                                                                      |                 |                        |                                 |                                                                                                 |        |          |                             |                                |                                                                                                   | Ē                                |
| Notes                                |                                                      |                                      |                                                                                                                      |                 |                        |                                 |                                                                                                 |        |          |                             |                                |                                                                                                   |                                  |
|                                      |                                                      |                                      |                                                                                                                      | ion is          | based or               | n Australian Stand              | ards AS 1726-1993. This log is not i                                                            |        |          |                             |                                | Ses.                                                                                              |                                  |
|                                      |                                                      | eviations                            | Air Rotary, BE-Bucket Excava                                                                                         | tion            | CC-Conc                | rete Coring                     |                                                                                                 |        |          | Abbrev<br>s VL-             | viations                       | Cohesive Soils                                                                                    | S-Vary                           |
| DC-Dia<br>(shove<br>SD-Sc            | amond<br>I), HFA<br>mic Dril                         | Core, FH<br>-Hollow F                | -Foam Hammer, HA-Hand Ai<br>Foam Hammer, HA-Hand Ai<br>Flight Auger, NDD-Non Destru<br>-Solid Flight Auger, SS-Split | uger,<br>ictive | HE-Hand<br>Drilling, F | Excavation<br>T-Pushtube,       | M-Moist, VM-Very Moist,<br>W-Wet, S-Saturated                                                   | Loose, | L-Loos   |                             | Medium                         | Soft, S-Soft, F-Firm<br>ST-Stiff, VST-Very<br>H-Hard                                              | ı, <sup>-</sup>                  |

**Appendix E** – NATA accredited laboratory reports and chain of custody documentation

| CHAIN OF CUSTODY RECORD    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Melbourne Office Address                                                                        | Comple                        | Completion Date / Turnaround | , pr              | Quote # / GHD Reference | ID Reference |                                                                                             | Page of                                                                                                                                                |
|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-------------------------------|------------------------------|-------------------|-------------------------|--------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| GHD                        | GHD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <b>180 Lonsdale Street, Melbourne 3000</b><br>Telephone: 613 8687 8000 Fax: 613 8687 8111       |                               | Fanda.o                      | 1                 |                         |              |                                                                                             | ·<br>·                                                                                                                                                 |
| Job Number                 | GHD Contact                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Laboratory:<br>Address                                                                          | 915                           | 1burds                       | ale               |                         |              |                                                                                             | COURIER AND LABORATORY INSTRUCTIONS:<br>Sign white copy on receipt and release of samples.<br>Samples are to be delivered to the Laboratory Address.   |
|                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                 |                               |                              |                   | <b>y</b>                |              |                                                                                             | On receipt of samples, the laboratory contact                                                                                                          |
| i l                        | DENNIQUN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Laboratory Contact:                                                                             | act: Shir                     | Iry C                        | · maraja          |                         |              |                                                                                             | to sign where copy and reacting to or to contract.<br>On completion of analyses please return white<br>convolution results.                            |
| SPUT MORE MANAGE           | Sol Paler.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                 |                               |                              |                   |                         |              |                                                                                             | Pink copy is returned to the sampler once the                                                                                                          |
|                            | GHD Contact email                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                 |                               |                              | ;<br>5            |                         |              | <u>о Ш </u> а                                                                               | couner has signed for the samples.<br>E-mail results to the GHD Project Manager<br>and GHD contact with the GHD Job Number in the e-mail subject line. |
| Den, and 150% C. g. v. (Dm | Date Time V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | omog s<br>Bl                                                                                    |                               | * <sup>1</sup><br>[15        | 401               |                         | -            |                                                                                             | Note email format: firstname.lastname@ghd.com                                                                                                          |
|                            | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | emoq<br>selo<br>q <b>a</b>                                                                      | 7                             | (04<br>(4)                   | 41                |                         |              |                                                                                             | Results to be provided in ESDAT compatible format                                                                                                      |
|                            | A Andrea<br>A Andrea<br>Andrea<br>Andrea<br>Andrea<br>Andrea<br>Andrea<br>Andrea<br>Andrea<br>Andrea<br>Andrea<br>Andrea<br>Andrea<br>Andrea<br>Andrea<br>Andrea<br>Andrea<br>Andrea<br>Andrea<br>Andrea<br>And | Miginia<br>Miniper<br>Miniper<br>Miniper<br>Miniper<br>Miniper<br>Miniper<br>Miniper<br>Miniper | 3)<br>104<br>04<br>04<br>5550 | *W<br>010                    | 91<br>0110<br>Fow | 40                      |              | 04                                                                                          | SAMBLE COMMENTS                                                                                                                                        |
| 1 5301                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3, B 3                                                                                          | ×<br>×<br>×                   | ×<br>×                       |                   |                         |              |                                                                                             |                                                                                                                                                        |
| 2055 1                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                 | ×<br>×<br>×                   | X                            |                   |                         |              |                                                                                             |                                                                                                                                                        |
| 5 5503                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                 | X                             | ×<br>×                       |                   |                         |              |                                                                                             | Environmental Division                                                                                                                                 |
|                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                 | X<br>X<br>X<br>X              | ××                           |                   |                         |              | æ                                                                                           | Welbourne<br>Work Order Reference                                                                                                                      |
| 5 5505                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                 | X<br>X<br>X<br>X              | ×                            |                   |                         |              |                                                                                             | EM1614608                                                                                                                                              |
| 9055 9                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                 | X X X X                       | XX                           |                   |                         |              |                                                                                             |                                                                                                                                                        |
| 7 5507                     | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1 1                                                                                             | ×<br>×<br>×<br>×              | ×<br>X                       |                   |                         | S            |                                                                                             |                                                                                                                                                        |
| 8 SEPS SWOI                | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | , P 2                                                                                           | Y                             |                              | ×<br>×            | X<br>X                  | 3            |                                                                                             |                                                                                                                                                        |
| 9 \$ SU02                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                 | ×                             |                              | ×<br>×<br>×       |                         |              |                                                                                             |                                                                                                                                                        |
| o Swo3                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                 | Y                             |                              | ×<br>×<br>×       | X                       |              |                                                                                             | l elephone :                                                                                                                                           |
| 11 1001                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                 | ×                             |                              | 1 22              | XXX                     |              |                                                                                             |                                                                                                                                                        |
| . rso/                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1 V V                                                                                           | X                             |                              | 190 So >          | XX                      |              | Â                                                                                           | Please find to Europies MG                                                                                                                             |
| 1 5602 0 V                 | S<br>S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1,53                                                                                            | XXXX                          | X                            |                   |                         |              |                                                                                             |                                                                                                                                                        |
| 3 5.802 05                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                               |                               |                              |                   |                         |              | Х                                                                                           | Exwarded to                                                                                                                                            |
| 14 5802-10                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                 | ×<br>×<br>×                   | ×<br>×                       | -                 |                         |              |                                                                                             |                                                                                                                                                        |
| 15 5303-01                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                 | X<br>X<br>X<br>X              | ××                           |                   |                         |              |                                                                                             | Secondary Law                                                                                                                                          |
| 4 5803-0.5                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | J V                                                                                             |                               |                              |                   |                         |              | X                                                                                           | Initials s.DDate s/us                                                                                                                                  |
|                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                 | * Melals !                    | 8 molals                     | 15 (Grande        | () V + (P)              | .5 3         |                                                                                             |                                                                                                                                                        |
|                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <u>.</u>                                                                                        |                               |                              |                   | •                       |              |                                                                                             |                                                                                                                                                        |
|                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                 |                               |                              |                   |                         |              |                                                                                             |                                                                                                                                                        |
|                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                               | Date/Time Received            |                              |                   |                         |              | uished                                                                                      | A.                                                                                                                                                     |
| SAMPLER                    | Sid Pales                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                 | 1                             | 30/11/16                     |                   |                         | 02/2         | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 | 1140                                                                                                                                                   |
| GHD SERVICE CENTRE         | C IN YASERERA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                 | ×//0//×                       | Werent. 1                    |                   | 4<br>                   | 17 70        | 91/7                                                                                        | mold crizi                                                                                                                                             |
| COURIER                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | P                                                                                               | -                             | (34 -9)                      |                   |                         |              |                                                                                             |                                                                                                                                                        |
| LABORATORY                 | SAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | A-W                                                                                             | 1                             | 2                            | e oc              |                         | · ·          |                                                                                             |                                                                                                                                                        |
|                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                 |                               |                              |                   |                         |              |                                                                                             |                                                                                                                                                        |

| CHAIN OF CUSTODY RECORD                |                               | Malhourna Office Address                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                       | Comuletion Date / Turnaround | Pui                                   | Quote # / GHD Reference |                                          | Page Z of Z                                                                                                                                              |                |
|----------------------------------------|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|------------------------------|---------------------------------------|-------------------------|------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| GHD                                    | GHD                           | 180 Lonsdale Street, Melbourne 3000<br>Telephone: 613 8687 8000 Fax: 613 8687 8111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | Stor de l                    | d (S day)                             |                         |                                          | •                                                                                                                                                        |                |
| Job Number<br>シックイイダン のプ               | GHD Contact                   | Laboratory:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | AL.                     | s Spin                       | 9401.                                 |                         |                                          | COURIER AND LABORATORY INSTRUCTIONS:<br>Sign white copy on receipt and release of samples.                                                               | r              |
|                                        |                               | Address:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                         | /                            | . 54                                  |                         |                                          | Samples are to be delivered to the Laboratory Address.<br>On receipt of samples, <b>the laboratory contact</b>                                           |                |
| - MSN                                  | RUNIQUIN                      | ontac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                         | Shirley                      | Себони                                |                         |                                          | to sign white copy and fax/email to GHD Contact.<br>On completion of analyses please return white                                                        |                |
| GHD Project Manager                    | GHD Contact                   | Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Analysesheetuite        |                              |                                       |                         |                                          | copy with results.<br>Pink copy is returned to the sampler once the<br>surviver hor cincord for the commune                                              |                |
| GHD PM email                           |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                         |                              |                                       |                         |                                          | counter incentions any event manager<br>E-mail results to the GHD Project Manager<br>and GHD Contact with the GHD Job Number in the e-mail subject line. |                |
| Kon, un un John grant                  | Time 1                        | athod<br>B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | J<br>2<br>241           |                              |                                       |                         | 0                                        | Note email format: firstname.lastname@ghd.com                                                                                                            |                |
|                                        | 34                            | ed :8<br>Stated<br>Stated<br>Stated<br>(.1m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10                      |                              |                                       |                         | 770                                      | Results to be provided in ESDAT compatible format                                                                                                        |                |
|                                        | 15 105 s<br>Holurés<br>Soduro | M eldmer<br>J2 108 -<br>Jai 50, W<br>Jai 50, W<br>Jai 108 -<br>Jai 108 | 1°1<br>01               | - (1)<br>0-19<br>7 7         |                                       |                         | 11                                       | SAMPLE COMMENTS                                                                                                                                          | Sieffangendeur |
| 1 5803-1-0                             |                               | J, 63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ×<br>×                  | ×<br>×<br>×                  |                                       |                         |                                          |                                                                                                                                                          | -              |
| 18 SBOS.O.1                            |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ×<br>×<br>×             | ×<br>×<br>×                  |                                       |                         |                                          |                                                                                                                                                          |                |
| 19 5305.0.5                            |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                         |                              |                                       |                         | X                                        |                                                                                                                                                          |                |
| 2505210                                |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ×<br>×<br>×             | ×<br>×<br>×                  |                                       |                         |                                          |                                                                                                                                                          |                |
| 21 5801_0.1                            | 30/11/16                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ×<br>×<br>×             | X<br>X<br>X                  |                                       |                         |                                          |                                                                                                                                                          |                |
| 2301, 0.5                              |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                         |                              |                                       |                         | ×.                                       |                                                                                                                                                          |                |
| 23 5801-10                             |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | XXXX                    | · x x ×                      |                                       |                         |                                          |                                                                                                                                                          |                |
| 24 5301-2.0                            |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                         |                              |                                       |                         | ×                                        |                                                                                                                                                          | · · · · ·      |
| v 5801-300                             |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                         |                              |                                       |                         | Y                                        |                                                                                                                                                          |                |
| 25 801 4.0                             |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                         |                              |                                       |                         | ×                                        |                                                                                                                                                          |                |
| 0.5-1085 h                             |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                         |                              |                                       |                         | ×                                        |                                                                                                                                                          | ·····          |
| NS204-0.15                             |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\frac{\times}{\times}$ | ×<br>*<br>×                  |                                       |                         |                                          |                                                                                                                                                          |                |
| B 5304 05                              |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                         |                              |                                       |                         | X                                        |                                                                                                                                                          |                |
| 0.1- 4085 oc                           |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                         |                              |                                       |                         | ×                                        |                                                                                                                                                          |                |
| 31 5304,2.0                            |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ×<br>×<br>×             | ×<br>×<br>×                  |                                       |                         |                                          |                                                                                                                                                          |                |
| 32 5304-3.0                            |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                         |                              |                                       |                         | ×                                        |                                                                                                                                                          |                |
| 33 5804 4.0                            |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                         |                              | · · · · · · · · · · · · · · · · · · · |                         | ×                                        |                                                                                                                                                          |                |
| Corat SQUERT OF SAME A                 |                               | COMMANS * WOLD'S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <i>م</i> د<br>۰.        | malerist                     | sterda.d) +                           | A.S.K.                  |                                          |                                                                                                                                                          |                |
| CUSTODY DE CARE SESSION CHIEFTER SAVAN |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                         |                              |                                       |                         |                                          |                                                                                                                                                          | <b>新田田</b>     |
|                                        | Name                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Date/Time Received      |                              |                                       | Date/Time Relinquished  |                                          |                                                                                                                                                          |                |
| SAMPLER                                | Sed Pater.                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | - 91/11/bz              | - 30/1/16                    |                                       | 02/12                   | 1100                                     | 1140                                                                                                                                                     |                |
| GHD SERVICE CENTRE                     | C. JAYA, KKKI                 | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2/12/16                 | 11.40cm                      | 11                                    | 0                       | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1 | the second s                                           |                |
| COURIER                                |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C                       |                              | ( <b>1</b> , <b>1</b> , <b>1</b> )    |                         |                                          |                                                                                                                                                          |                |
| LABORATORY                             | have                          | j<br>Ţ<br>Ţ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                       |                              |                                       |                         |                                          |                                                                                                                                                          |                |

| CHAIN OF CUSTODY RECORD |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Malkanana Offices Address                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | n noisclanach                           |                      | Oucha # / GHD Reference | Page 2 of                                                                                                                                                  |
|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|----------------------|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GHD                     | (eh)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Melloqume Unice Address<br>180 Lonsdale Street, Melbourne 3000<br>Telephone: 613 6687 8000 Fax: 613 8687 8111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                         | Shedand (Fala)       |                         |                                                                                                                                                            |
| Job Number<br>の、のてくのので  | GHD Contact                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Laboratory:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Azs.                                    | Spingral.            |                         | COURIER AND LABORATORY INSTRUCTIONS:<br>Sign white copy on receipt and release of samples.                                                                 |
| 2020                    | 210 10111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Address:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                         |                      |                         | Samples are to be delivered to the Laboratory Address.<br>On receipt of samples, the laboratory contact                                                    |
| FRNSW - DENNI           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Laboratory Contact:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Shirle                                  | 1 lilainu.           |                         | to sign while copy and fax/email to GHD Contact.<br>On completion of analyses please return white                                                          |
| GHD Project Manager     | GHD Contact                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Type Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | atyses Raquirad                         |                      |                         | copy with results.<br>Plank copy is returned to the sampler once the                                                                                       |
| GHD PM email            | GHD Contact email                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | >×<br>'>-2 /<br>                        |                      |                         | courser has agreen for the samples.<br>The start results to the GHD Project Manager<br>and GHD Contact with the GHD Job Number in the e-mail subject line. |
| Service Samuel D        | Date Line                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | - Ei                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | '5 '                                    |                      |                         | Note email format: firstname.lastname@ghd.com                                                                                                              |
|                         | 94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (Jul)<br>emog<br>sseið :{<br>eg: g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2107<br>75<br>707<br>76                 | 5/5/                 | <i>(</i> 77)            | Results to be provided in ESDAT compatible format                                                                                                          |
|                         | An Control of Control | Valume<br>Valume<br>Valume<br>Valume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ち<br>うつ<br>シン                           |                      |                         | SAMPLECOMMENTS                                                                                                                                             |
| × 5804-5.0              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | J, 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                         |                      |                         |                                                                                                                                                            |
| 1.0.10MW SE             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ×<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ×<br>×<br>×                             |                      |                         |                                                                                                                                                            |
| 26 MM01- 1.0            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                      | ×<br>                   |                                                                                                                                                            |
| 37 MWOB 9.0             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | XXXX                                    | ×                    |                         | 2                                                                                                                                                          |
| 38 1144 02 20.1         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\times$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | XXXX                                    | X                    |                         |                                                                                                                                                            |
| 39 MM 1022-1.0          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                      |                         |                                                                                                                                                            |
| 10 10 22 -13.5          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | X<br>X<br>X<br>X<br>X                   | ý.                   |                         |                                                                                                                                                            |
| 41 Murez_0.1            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\frac{1}{2}$                           |                      |                         |                                                                                                                                                            |
| 42 M W 03_ 1.0          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ×<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ¥<br>X<br>X<br>¥                        | ×                    |                         |                                                                                                                                                            |
| 43 6 002                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | X                                       | ×                    |                         |                                                                                                                                                            |
| 4 6003                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ×<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ×                                       |                      |                         |                                                                                                                                                            |
| 5057-                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ×<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ,<br>X                                  | ×                    |                         | Please torner of the Erichans                                                                                                                              |
| . F503                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ×<br>×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | X                                       | ×                    |                         | 100                                                                                                                                                        |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                      |                         |                                                                                                                                                            |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                      |                         |                                                                                                                                                            |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                      |                         |                                                                                                                                                            |
| TOTAL NUMBER OF SAME A  | Sathara and a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | The second secon | otali : Smi                             | 1015 (5to. dad) & K, | 5, 11.                  |                                                                                                                                                            |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                      | x                       |                                                                                                                                                            |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                      |                         |                                                                                                                                                            |
| SAMPLER                 | Name<br>Sid Palei E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Date/Time Received<br>29/10/16 - 20/10/ | 116                  | Date/Time Relinquished  | 1140                                                                                                                                                       |
| GHD SERVICE CENTRE      | C. JAYASEKERA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2/12/16 11:                             | :40arz               | D2/16/10                |                                                                                                                                                            |
| COURIER                 | Con Contraction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4                                       |                      |                         |                                                                                                                                                            |
| LABORATORY              | Marry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | - Adu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         | 14-05                |                         |                                                                                                                                                            |

1



#### **CERTIFICATE OF ANALYSIS**

| Work Order              | EM1614608                                | Page                    | : 1 of 26                                    |
|-------------------------|------------------------------------------|-------------------------|----------------------------------------------|
| Client                  | : GHD PTY LTD                            | Laboratory              | Environmental Division Melbourne             |
| Contact                 | : MR BEN ANDERSON                        | Contact                 | : Shirley LeCornu                            |
| Address                 | : LEVEL 8, 180 LONSDALE ST               | Address                 | : 4 Westall Rd Springvale VIC Australia 3171 |
|                         | MELBOURNE VIC, AUSTRALIA 3001            |                         |                                              |
| Telephone               | : +61 07 5413 8161                       | Telephone               | : +61-3-8549 9630                            |
| Project                 | : 212558305                              | Date Samples Received   | : 02-Dec-2016 14:00                          |
| Order number            | :                                        | Date Analysis Commenced | : 05-Dec-2016                                |
| C-O-C number            | :                                        | Issue Date              | : 12-Dec-2016 17:58                          |
| Sampler                 | : SP                                     |                         | IZ-Dec-2016 17:58                            |
| Site                    | : DENILIQUIN                             |                         |                                              |
| Quote number            | : EN/005/15 VICTORIA (Primary work only) |                         | Accreditation No. 825                        |
| No. of samples received | : 44                                     |                         | Accreditation No. 825                        |
| No. of samples analysed | : 29                                     |                         | ISO/IEC 17025 - Testing                      |

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

#### Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

| Signatories     | Position                     | Accreditation Category                      |
|-----------------|------------------------------|---------------------------------------------|
| Alex Rossi      | Organic Chemist              | Sydney Organics, Smithfield, NSW            |
| Andrew Epps     | Senior Inorganic Chemist     | Brisbane Acid Sulphate Soils, Stafford, QLD |
| Dianne Blane    | Laboratory Coordinator (2IC) | Newcastle - Inorganics, Mayfield West, NSW  |
| Dilani Fernando | Senior Inorganic Chemist     | Melbourne Inorganics, Springvale, VIC       |
| Lana Nguyen     | Senior LCMS Chemist          | Sydney Organics, Smithfield, NSW            |

| Page       | : 2 of 26     |
|------------|---------------|
| Work Order | : EM1614608   |
| Client     | : GHD PTY LTD |
| Project    | 212558305     |



#### **General Comments**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When no sampling time is provided, the sampling time will default 00:00 on the date of sampling. If no sampling date is provided, the sampling date will be assumed by the laboratory and displayed in brackets without a time component.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

 $\emptyset$  = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

- EA150H: Soil particle density results for sample #003 fell outside the scope of AS1289.3.6.3. Results should be scrutinised accordingly.
- TDS by method EA-015 may bias high for EM1614608 #8, 9, 10 and 11 due to the presence of fine particulate matter, which may pass through the prescribed GF/C paper.
- Ionic balances were calculated using: major anions chloride, alkalinity and sulfate; and major cations calcium, magnesium, potassium and sodium.
- ED007 and ED008: When Exchangeable AI is reported from these methods, it should be noted that Rayment & Lyons (2011) suggests Exchange Acidity by 1M KCI Method 15G1 (ED005) is a more suitable method for the determination of exchange acidity (H+ + AI3+).

| Page       | : 3 of 26     |
|------------|---------------|
| Work Order | EM1614608     |
| Client     | : GHD PTY LTD |
| Project    | 212558305     |



| Sub-Matrix: SOIL<br>(Matrix: SOIL)     |              | Clie       | ent sample ID  | SS01              | SS02              | SS03              | SS04              | SS05              |
|----------------------------------------|--------------|------------|----------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|                                        | Cli          | ent sampli | ng date / time | 29-Nov-2016 00:00 |
| Compound                               | CAS Number   | LOR        | Unit           | EM1614608-001     | EM1614608-002     | EM1614608-003     | EM1614608-004     | EM1614608-005     |
|                                        |              |            |                | Result            | Result            | Result            | Result            | Result            |
| A055: Moisture Content                 |              |            |                |                   |                   |                   |                   |                   |
| Moisture Content (dried @ 103°C)       |              | 1          | %              | 17.2              | 15.2              | 30.7              | 30.4              | 27.9              |
| EA150: Particle Sizing                 |              |            |                |                   |                   |                   |                   |                   |
| +75μm                                  |              | 1          | %              | 32                | 9                 | 16                | 35                | 18                |
| +150µm                                 |              | 1          | %              | 25                | 6                 | 10                | 29                | 11                |
| +300µm                                 |              | 1          | %              | 18                | 3                 | 7                 | 17                | 6                 |
| +425µm                                 |              | 1          | %              | 12                | 2                 | 6                 | 9                 | 5                 |
| +600µm                                 |              | 1          | %              | 12                | 2                 | 5                 | 5                 | 5                 |
| +1180µm                                |              | 1          | %              | 7                 | <1                | 3                 | 2                 | 3                 |
| +2.36mm                                |              | 1          | %              | 4                 | <1                | <1                | <1                | 2                 |
| +4.75mm                                |              | 1          | %              | 2                 | <1                | <1                | <1                | 2                 |
| +9.5mm                                 |              | 1          | %              | <1                | <1                | <1                | <1                | <1                |
| +19.0mm                                |              | 1          | %              | <1                | <1                | <1                | <1                | <1                |
| +37.5mm                                |              | 1          | %              | <1                | <1                | <1                | <1                | <1                |
| +75.0mm                                |              | 1          | %              | <1                | <1                | <1                | <1                | <1                |
| A150: Soil Classification based on Pa  | article Size |            |                |                   |                   |                   |                   |                   |
| Clay (<2 μm)                           |              | 1          | %              | 34                | 56                | 51                | 39                | 41                |
| Silt (2-60 µm)                         |              | 1          | %              | 25                | 25                | 29                | 18                | 30                |
| Sand (0.06-2.00 mm)                    |              | 1          | %              | 36                | 19                | 19                | 42                | 27                |
| Gravel (>2mm)                          |              | 1          | %              | 5                 | <1                | 1                 | 1                 | 2                 |
| Cobbles (>6cm)                         |              | 1          | %              | <1                | <1                | <1                | <1                | <1                |
| A152: Soil Particle Density            |              |            |                |                   |                   |                   |                   |                   |
| Soil Particle Density (Clay/Silt/Sand) |              | 0.01       | g/cm3          | 2.62              | 2.65              | 2.38              | 2.65              | 2.50              |
| D006: Exchangeable Cations on Alka     | line Soils   |            |                |                   |                   |                   |                   |                   |
| Exchangeable Calcium                   |              | 0.2        | meq/100g       | 6.6               | 10.9              |                   |                   |                   |
| Exchangeable Magnesium                 |              | 0.2        | meq/100g       | 5.0               | 9.0               |                   |                   |                   |
| Exchangeable Potassium                 |              | 0.2        | meq/100g       | 0.6               | 0.8               |                   |                   |                   |
| Exchangeable Sodium                    |              | 0.2        | meq/100g       | 2.0               | 2.4               |                   |                   |                   |
| Cation Exchange Capacity               |              | 0.2        | meq/100g       | 14.2              | 23.2              |                   |                   |                   |
| D007: Exchangeable Cations             |              |            |                |                   |                   |                   |                   |                   |
| Exchangeable Calcium                   |              | 0.1        | meq/100g       |                   |                   | 16.0              | 14.5              | 9.7               |
| Exchangeable Magnesium                 |              | 0.1        | meq/100g       |                   |                   | 8.1               | 5.1               | 7.1               |
| Exchangeable Potassium                 |              | 0.1        | meq/100g       |                   |                   | 1.1               | 0.9               | 1.1               |
| Exchangeable Sodium                    |              | 0.1        | meq/100g       |                   |                   | 0.5               | 0.3               | 0.7               |
| Cation Exchange Capacity               |              | 0.1        | meq/100g       |                   |                   | 25.6              | 20.8              | 18.6              |

| Page       | : 4 of 26     |
|------------|---------------|
| Work Order | : EM1614608   |
| Client     | : GHD PTY LTD |
| Project    | 212558305     |



| Sub-Matrix: SOIL<br>(Matrix: SOIL)       | Client sample IE |              | ent sample ID  | SS01              | SS02              | SS03              | SS04              | SS05              |
|------------------------------------------|------------------|--------------|----------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|                                          | CI               | lient sampli | ng date / time | 29-Nov-2016 00:00 |
| Compound                                 | CAS Number       | LOR          | Unit           | EM1614608-001     | EM1614608-002     | EM1614608-003     | EM1614608-004     | EM1614608-005     |
|                                          |                  |              | -              | Result            | Result            | Result            | Result            | Result            |
| ED008: Exchangeable Cations              |                  |              |                |                   |                   |                   |                   |                   |
| Exchangeable Calcium                     |                  | 0.1          | meq/100g       |                   |                   |                   |                   |                   |
| Exchangeable Magnesium                   |                  | 0.1          | meq/100g       |                   |                   |                   |                   |                   |
| Exchangeable Potassium                   |                  | 0.1          | meq/100g       |                   |                   |                   |                   |                   |
| Exchangeable Sodium                      |                  | 0.1          | meq/100g       |                   |                   |                   |                   |                   |
| Cation Exchange Capacity                 |                  | 0.1          | meq/100g       |                   |                   |                   |                   |                   |
| ED040S : Soluble Sulfate by ICPAES       |                  |              |                |                   |                   |                   |                   |                   |
| Silicon                                  | 7440-21-3        | 1            | mg/kg          | 4680              | 7200              | 2170              | 1700              | 3010              |
| D093S: Soluble Major Cations             |                  |              |                |                   |                   |                   |                   |                   |
| Potassium                                | 7440-09-7        | 10           | mg/kg          | 310               | 410               | 140               | 110               | 190               |
| EG005T: Total Metals by ICP-AES          |                  |              |                |                   |                   |                   |                   |                   |
| Aluminium                                | 7429-90-5        | 50           | mg/kg          | 12200             | 19200             | 15600             | 17700             | 15600             |
| Iron                                     | 7439-89-6        | 50           | mg/kg          | 17700             | 23200             | 19700             | 20000             | 17000             |
| P003: Total Organic Carbon (TOC) in Soil |                  |              |                |                   |                   |                   |                   |                   |
| Total Organic Carbon                     |                  | 0.02         | %              | 0.68              | 0.50              | 3.12              | 0.69              | 0.75              |
| EP231A: Perfluoroalkyl Sulfonic Acids    |                  |              |                |                   |                   |                   |                   |                   |
| Perfluorobutane sulfonic acid            | 375-73-5         | 0.0002       | mg/kg          | 0.0003            | 0.0004            | <0.0002           | <0.0002           | <0.0002           |
| (PFBS)                                   | 515-15-5         | 0.0002       |                | 0.0000            | 0.0004            | 0.0002            | 0.0001            | 0.0002            |
| Perfluoropentane sulfonic acid           | 2706-91-4        | 0.0002       | mg/kg          | 0.0003            | 0.0006            | <0.0002           | <0.0002           | 0.0002            |
| (PFPeS)                                  |                  |              | 0.0            |                   |                   |                   |                   |                   |
| Perfluorohexane sulfonic acid            | 355-46-4         | 0.0002       | mg/kg          | 0.0053            | 0.0065            | 0.0017            | 0.0012            | 0.0034            |
| (PFHxS)                                  |                  |              |                |                   |                   |                   |                   |                   |
| Perfluoroheptane sulfonic acid           | 375-92-8         | 0.0002       | mg/kg          | 0.0006            | 0.0008            | <0.0002           | 0.0003            | 0.0004            |
| (PFHpS)                                  |                  |              |                |                   |                   |                   |                   |                   |
| Perfluorooctane sulfonic acid            | 1763-23-1        | 0.0002       | mg/kg          | 0.297             | 0.277             | 0.0081            | 0.0294            | 0.0396            |
| (PFOS)                                   |                  |              |                |                   |                   |                   |                   |                   |
| Perfluorodecane sulfonic acid            | 67906-42-7       | 0.0002       | mg/kg          | 0.0014            | 0.0072            | <0.0002           | <0.0002           | 0.0009            |
| (PFDS)                                   |                  |              |                |                   |                   |                   |                   |                   |
| EP231B: Perfluoroalkyl Carboxylic Acids  |                  |              |                |                   |                   |                   |                   |                   |
| Perfluorobutanoic acid (PFBA)            | 375-22-4         |              | mg/kg          | <0.001            | <0.001            | <0.001            | < 0.001           | <0.001            |
| Perfluoropentanoic acid (PFPeA)          | 2706-90-3        |              | mg/kg          | 0.0015            | 0.0014            | 0.0004            | <0.0002           | 0.0014            |
| Perfluorohexanoic acid (PFHxA)           | 307-24-4         |              | mg/kg          | 0.0038            | 0.0063            | 0.0010            | 0.0004            | 0.0031            |
| Perfluoroheptanoic acid (PFHpA)          | 375-85-9         |              | mg/kg          | 0.0011            | 0.0008            | <0.0002           | <0.0002           | 0.0019            |
| Perfluorooctanoic acid (PFOA)            | 335-67-1         |              | mg/kg          | 0.0022            | 0.0031            | <0.0002           | 0.0003            | 0.0032            |
| Perfluorononanoic acid (PFNA)            | 375-95-1         | 0.0002       | mg/kg          | 0.0008            | 0.0002            | <0.0002           | <0.0002           | 0.0004            |
| Perfluorodecanoic acid (PFDA)            | 335-76-2         | 0.0002       | mg/kg          | 0.0011            | 0.0032            | <0.0002           | <0.0002           | <0.0002           |

| Page       | 5 of 26       |
|------------|---------------|
| Work Order | : EM1614608   |
| Client     | : GHD PTY LTD |
| Project    | 212558305     |



| Sub-Matrix: SOIL<br>(Matrix: SOIL)                      |                 | Clie                        | nt sample ID | SS01          | SS02              | SS03              | SS04              | SS05              |
|---------------------------------------------------------|-----------------|-----------------------------|--------------|---------------|-------------------|-------------------|-------------------|-------------------|
|                                                         | C               | Client sampling date / time |              |               | 29-Nov-2016 00:00 | 29-Nov-2016 00:00 | 29-Nov-2016 00:00 | 29-Nov-2016 00:00 |
| Compound                                                | CAS Number      | LOR                         | Unit         | EM1614608-001 | EM1614608-002     | EM1614608-003     | EM1614608-004     | EM1614608-005     |
|                                                         |                 |                             |              | Result        | Result            | Result            | Result            | Result            |
| EP231B: Perfluoroalkyl Carboxylic Ac                    | ids - Continued |                             |              |               |                   |                   |                   |                   |
| Perfluoroundecanoic acid                                | 2058-94-8       | 0.0002                      | mg/kg        | <0.0002       | 0.0014            | <0.0002           | <0.0002           | <0.0002           |
| (PFUnDA)                                                |                 |                             |              |               |                   |                   |                   |                   |
| Perfluorododecanoic acid                                | 307-55-1        | 0.0002                      | mg/kg        | <0.0002       | 0.0020            | <0.0002           | <0.0002           | <0.0002           |
| (PFDoDA)                                                |                 |                             |              |               |                   |                   |                   |                   |
| Perfluorotridecanoic acid                               | 72629-94-8      | 0.0002                      | mg/kg        | <0.0002       | <0.0002           | <0.0002           | <0.0002           | <0.0002           |
| (PFTrDA)                                                |                 |                             |              |               |                   |                   |                   |                   |
| Perfluorotetradecanoic acid                             | 376-06-7        | 0.0005                      | mg/kg        | <0.0005       | <0.0005           | <0.0005           | <0.0005           | <0.0005           |
| (PFTeDA)                                                |                 |                             |              |               |                   |                   |                   |                   |
| EP231C: Perfluoroalkyl Sulfonamides                     |                 |                             |              |               |                   |                   |                   |                   |
| Perfluorooctane sulfonamide                             | 754-91-6        | 0.0002                      | mg/kg        | 0.0009        | 0.0076            | <0.0002           | <0.0002           | 0.0006            |
| (FOSA)                                                  |                 |                             |              |               |                   |                   |                   |                   |
| N-Methyl perfluorooctane                                | 31506-32-8      | 0.0005                      | mg/kg        | <0.0005       | <0.0005           | <0.0005           | <0.0005           | <0.0005           |
| sulfonamide (MeFOSA)                                    |                 | 0.0005                      |              | -0.0005       | -0.0005           | -0.0005           | 40.0005           | -0.0005           |
| N-Ethyl perfluorooctane                                 | 4151-50-2       | 0.0005                      | mg/kg        | <0.0005       | <0.0005           | <0.0005           | <0.0005           | <0.0005           |
| sulfonamide (EtFOSA)                                    | 2449.00.7       | 0.0005                      | ma/ka        | <0.0005       | <0.0005           | <0.0005           | <0.0005           | <0.0005           |
| N-Methyl perfluorooctane<br>sulfonamidoethanol (MeFOSE) | 2448-09-7       | 0.0005                      | mg/kg        | ~0.0005       | <0.0000           | ~0.0005           | ~0.0003           | ~0.0005           |
| N-Ethyl perfluorooctane                                 | 1691-99-2       | 0.0005                      | mg/kg        | <0.0005       | <0.0005           | <0.0005           | <0.0005           | < 0.0005          |
| sulfonamidoethanol (EtFOSE)                             | 1091-99-2       | 0.0000                      | mgmg         | 0.0000        |                   |                   |                   |                   |
| N-Methyl perfluorooctane                                | 2355-31-9       | 0.0002                      | mg/kg        | <0.0002       | <0.0002           | <0.0002           | <0.0002           | <0.0002           |
| sulfonamidoacetic acid                                  | 2000 01 0       |                             | 0.0          |               |                   |                   |                   |                   |
| (MeFOSAA)                                               |                 |                             |              |               |                   |                   |                   |                   |
| N-Ethyl perfluorooctane                                 | 2991-50-6       | 0.0002                      | mg/kg        | <0.0002       | <0.0002           | <0.0002           | <0.0002           | <0.0002           |
| sulfonamidoacetic acid                                  |                 |                             |              |               |                   |                   |                   |                   |
| (EtFOSAA)                                               |                 |                             |              |               |                   |                   |                   |                   |
| EP231D: (n:2) Fluorotelomer Sulfonic                    | Acids           |                             |              |               |                   |                   |                   |                   |
| 4:2 Fluorotelomer sulfonic acid                         | 757124-72-4     | 0.0005                      | mg/kg        | <0.0005       | <0.0005           | <0.0005           | <0.0005           | <0.0005           |
| (4:2 FTS)                                               |                 |                             |              |               |                   |                   |                   |                   |
| 6:2 Fluorotelomer sulfonic acid                         | 27619-97-2      | 0.0005                      | mg/kg        | 0.0164        | 0.0364            | <0.0005           | 0.0013            | 0.0044            |
| (6:2 FTS)                                               |                 |                             |              |               |                   |                   |                   |                   |
| 8:2 Fluorotelomer sulfonic acid                         | 39108-34-4      | 0.0005                      | mg/kg        | 0.0043        | 0.0244            | <0.0005           | <0.0005           | 0.0007            |
| (8:2 FTS)                                               |                 |                             |              |               |                   |                   |                   |                   |
| 10:2 Fluorotelomer sulfonic acid                        | 120226-60-0     | 0.0005                      | mg/kg        | 0.0026        | 0.0325            | <0.0005           | <0.0005           | <0.0005           |
| (10:2 FTS)                                              |                 |                             |              |               |                   |                   |                   |                   |
| EP231P: PFAS Sums                                       |                 |                             |              |               |                   |                   |                   |                   |
| Sum of PFAS                                             |                 | 0.0002                      | mg/kg        | 0.340         | 0.412             | 0.0112            | 0.0329            | 0.0602            |

| Page       | : 6 of 26     |
|------------|---------------|
| Work Order | : EM1614608   |
| Client     | : GHD PTY LTD |
| Project    | 212558305     |



| Sub-Matrix: SOIL<br>(Matrix: SOIL) |                   | Clie          | ent sample ID  | SS01              | SS02              | SS03              | SS04              | SS05              |
|------------------------------------|-------------------|---------------|----------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|                                    | Cl                | lient sampliı | ng date / time | 29-Nov-2016 00:00 |
| Compound                           | CAS Number        | LOR           | Unit           | EM1614608-001     | EM1614608-002     | EM1614608-003     | EM1614608-004     | EM1614608-005     |
|                                    |                   |               |                | Result            | Result            | Result            | Result            | Result            |
| EP231P: PFAS Sums - Continued      |                   |               |                |                   |                   |                   |                   |                   |
| Sum of PFHxS and PFOS              | 355-46-4/1763-23- | 0.0002        | mg/kg          | 0.302             | 0.284             | 0.0098            | 0.0306            | 0.0430            |
|                                    | 1                 |               |                |                   |                   |                   |                   |                   |
| Sum of PFAS (WA DER List)          |                   | 0.0002        | mg/kg          | 0.332             | 0.356             | 0.0112            | 0.0326            | 0.0577            |
| EP231S: PFAS Surrogate             |                   |               |                |                   |                   |                   |                   |                   |
| 13C4-PFOS                          |                   | 0.0002        | %              | 112               | 104               | 96.0              | 109               | 120               |

| Page       | : 7 of 26     |
|------------|---------------|
| Work Order | EM1614608     |
| Client     | : GHD PTY LTD |
| Project    | 212558305     |



| Sub-Matrix: SOIL<br>(Matrix: SOIL)     |              |      |          |               | SS07              | SB02_0.1          | SB02_1.0          | SB03_0.1          |
|----------------------------------------|--------------|------|----------|---------------|-------------------|-------------------|-------------------|-------------------|
|                                        |              |      |          |               | 29-Nov-2016 00:00 | 29-Nov-2016 00:00 | 29-Nov-2016 00:00 | 29-Nov-2016 00:00 |
| Compound                               | CAS Number   | LOR  | Unit     | EM1614608-006 | EM1614608-007     | EM1614608-012     | EM1614608-014     | EM1614608-015     |
|                                        |              |      |          | Result        | Result            | Result            | Result            | Result            |
| EA055: Moisture Content                |              |      |          |               |                   |                   |                   |                   |
| Moisture Content (dried @ 103°C)       |              | 1    | %        | 27.3          | 31.0              | 21.7              | 17.7              | 7.2               |
| EA150: Particle Sizing                 |              |      |          |               |                   |                   |                   |                   |
| +75µm                                  |              | 1    | %        | 13            | 13                | 62                | 10                | 70                |
| +150μm                                 |              | 1    | %        | 8             | 7                 | 46                | 5                 | 66                |
| +300µm                                 |              | 1    | %        | 5             | 4                 | 35                | 2                 | 57                |
| +425μm                                 |              | 1    | %        | 4             | 2                 | 30                | <1                | 46                |
| +600µm                                 |              | 1    | %        | 2             | 2                 | 25                | <1                | 34                |
| +1180µm                                |              | 1    | %        | 1             | <1                | 15                | <1                | 16                |
| +2.36mm                                |              | 1    | %        | <1            | <1                | 6                 | <1                | 5                 |
| +4.75mm                                |              | 1    | %        | <1            | <1                | 2                 | <1                | <1                |
| +9.5mm                                 |              | 1    | %        | <1            | <1                | <1                | <1                | <1                |
| +19.0mm                                |              | 1    | %        | <1            | <1                | <1                | <1                | <1                |
| +37.5mm                                |              | 1    | %        | <1            | <1                | <1                | <1                | <1                |
| +75.0mm                                |              | 1    | %        | <1            | <1                | <1                | <1                | <1                |
| A150: Soil Classification based on Pa  | article Size |      |          |               |                   |                   |                   |                   |
| Clay (<2 μm)                           |              | 1    | %        | 49            | 57                | 15                | 53                | 15                |
| Silt (2-60 µm)                         |              | 1    | %        | 23            | 22                | 18                | 26                | 9                 |
| Sand (0.06-2.00 mm)                    |              | 1    | %        | 28            | 21                | 58                | 21                | 68                |
| Gravel (>2mm)                          |              | 1    | %        | <1            | <1                | 9                 | <1                | 8                 |
| Cobbles (>6cm)                         |              | 1    | %        | <1            | <1                | <1                | <1                | <1                |
| A152: Soil Particle Density            |              |      |          |               |                   |                   |                   |                   |
| Soil Particle Density (Clay/Silt/Sand) |              | 0.01 | g/cm3    | 2.65          | 2.65              | 2.69              | 2.63              | 2.64              |
| D006: Exchangeable Cations on Alka     | line Soils   |      |          |               |                   |                   |                   |                   |
| Exchangeable Calcium                   |              | 0.2  | meq/100g |               | 8.3               | 2.6               | 6.0               | 1.4               |
| Exchangeable Magnesium                 |              | 0.2  | meq/100g |               | 8.2               | 2.0               | 6.9               | <0.2              |
| Exchangeable Potassium                 |              | 0.2  | meq/100g |               | 0.7               | 0.4               | 0.5               | <0.2              |
| Exchangeable Sodium                    |              | 0.2  | meq/100g |               | 2.8               | 3.3               | 8.8               | 1.3               |
| Cation Exchange Capacity               |              | 0.2  | meq/100g |               | 20.0              | 8.2               | 22.2              | 2.9               |
| D007: Exchangeable Cations             |              |      |          |               |                   |                   |                   |                   |
| Exchangeable Calcium                   |              | 0.1  | meq/100g | 9.4           |                   |                   |                   |                   |
| Exchangeable Magnesium                 |              | 0.1  | meq/100g | 11.7          |                   |                   |                   |                   |
| Exchangeable Potassium                 |              | 0.1  | meq/100g | 1.1           |                   |                   |                   |                   |
| Exchangeable Sodium                    |              | 0.1  | meq/100g | 1.2           |                   |                   |                   |                   |
| Cation Exchange Capacity               |              | 0.1  | meg/100g | 23.4          |                   |                   |                   |                   |

| Page       | : 8 of 26     |
|------------|---------------|
| Work Order | EM1614608     |
| Client     | : GHD PTY LTD |
| Project    | 212558305     |



| Sub-Matrix: SOIL<br>(Matrix: SOIL)       | Client sample ID |              | SS06           | SS07              | SB02_0.1          | SB02_1.0          | SB03_0.1          |                   |
|------------------------------------------|------------------|--------------|----------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|                                          | Ci               | lient sampli | ng date / time | 29-Nov-2016 00:00 |
| Compound                                 | CAS Number       | LOR          | Unit           | EM1614608-006     | EM1614608-007     | EM1614608-012     | EM1614608-014     | EM1614608-015     |
|                                          |                  |              | -              | Result            | Result            | Result            | Result            | Result            |
| ED008: Exchangeable Cations              |                  |              |                |                   |                   |                   |                   |                   |
| Exchangeable Calcium                     |                  | 0.1          | meq/100g       |                   |                   |                   |                   |                   |
| Exchangeable Magnesium                   |                  | 0.1          | meq/100g       |                   |                   |                   |                   |                   |
| Exchangeable Potassium                   |                  | 0.1          | meq/100g       |                   |                   |                   |                   |                   |
| Exchangeable Sodium                      |                  | 0.1          | meq/100g       |                   |                   |                   |                   |                   |
| Cation Exchange Capacity                 |                  | 0.1          | meq/100g       |                   |                   |                   |                   |                   |
| ED040S : Soluble Sulfate by ICPAES       |                  |              |                |                   |                   |                   |                   |                   |
| Silicon                                  | 7440-21-3        | 1            | mg/kg          | 8080              | 5700              | 175               | 100               | 734               |
| ED093S: Soluble Major Cations            |                  |              |                |                   |                   |                   |                   |                   |
| Potassium                                | 7440-09-7        | 10           | mg/kg          | 470               | 320               | 30                | <10               | 50                |
| EG005T: Total Metals by ICP-AES          |                  |              |                |                   |                   |                   |                   |                   |
| Aluminium                                | 7429-90-5        | 50           | mg/kg          | 21700             | 18900             | 8190              | 10600             | 3230              |
| Iron                                     | 7439-89-6        |              | mg/kg          | 26200             | 21000             | 15500             | 14100             | 5500              |
| EP003: Total Organic Carbon (TOC) in Soi |                  |              | 0.0            |                   |                   |                   |                   |                   |
| Total Organic Carbon                     |                  | 0.02         | %              | 0.61              | 0.47              | 0.32              | 0.27              | 0.12              |
| EP231A: Perfluoroalkyl Sulfonic Acids    |                  |              |                |                   |                   |                   |                   |                   |
| Perfluorobutane sulfonic acid            | 375-73-5         | 0.0002       | mg/kg          | <0.0002           | <0.0002           | 0.343             | 0.0879            | 0.0007            |
| (PFBS)                                   | 575-75-5         | 0.0002       | inging         | 0.0002            | 0.0002            | 0.040             | 0.0010            | 0.0007            |
| Perfluoropentane sulfonic acid           | 2706-91-4        | 0.0002       | mg/kg          | <0.0002           | <0.0002           | 0.306             | 0.0660            | 0.0008            |
| (PFPeS)                                  |                  |              | 0.0            |                   |                   |                   |                   |                   |
| Perfluorohexane sulfonic acid            | 355-46-4         | 0.0002       | mg/kg          | 0.0004            | <0.0002           | 2.15              | 0.212             | 0.0078            |
| (PFHxS)                                  |                  |              |                |                   |                   |                   |                   |                   |
| Perfluoroheptane sulfonic acid           | 375-92-8         | 0.0002       | mg/kg          | <0.0002           | <0.0002           | 0.309             | 0.0024            | 0.0013            |
| (PFHpS)                                  |                  |              |                |                   |                   |                   |                   |                   |
| Perfluorooctane sulfonic acid            | 1763-23-1        | 0.0002       | mg/kg          | 0.0325            | 0.0250            | 10.7              | 0.0778            | 0.454             |
| (PFOS)                                   |                  |              |                |                   |                   |                   |                   |                   |
| Perfluorodecane sulfonic acid            | 67906-42-7       | 0.0002       | mg/kg          | 0.0002            | <0.0002           | 0.0068            | <0.0002           | 0.0034            |
| (PFDS)                                   |                  |              |                |                   |                   |                   |                   |                   |
| EP231B: Perfluoroalkyl Carboxylic Acids  |                  |              |                |                   |                   |                   |                   |                   |
| Perfluorobutanoic acid (PFBA)            | 375-22-4         |              | mg/kg          | <0.001            | <0.001            | 0.060             | <0.001            | <0.001            |
| Perfluoropentanoic acid (PFPeA)          | 2706-90-3        |              | mg/kg          | 0.0002            | <0.0002           | 0.165             | 0.0360            | 0.0006            |
| Perfluorohexanoic acid (PFHxA)           | 307-24-4         |              | mg/kg          | 0.0003            | <0.0002           | 0.608             | 0.146             | 0.0041            |
| Perfluoroheptanoic acid (PFHpA)          | 375-85-9         |              | mg/kg          | <0.0002           | <0.0002           | 0.0407            | 0.0148            | 0.0005            |
| Perfluorooctanoic acid (PFOA)            | 335-67-1         |              | mg/kg          | 0.0002            | <0.0002           | 0.232             | 0.0113            | 0.0022            |
| Perfluorononanoic acid (PFNA)            | 375-95-1         |              | mg/kg          | <0.0002           | <0.0002           | 0.0005            | <0.0002           | <0.0002           |
| Perfluorodecanoic acid (PFDA)            | 335-76-2         | 0.0002       | mg/kg          | <0.0002           | <0.0002           | 0.0017            | <0.0002           | 0.0004            |

| Page       | : 9 of 26     |
|------------|---------------|
| Work Order | : EM1614608   |
| Client     | : GHD PTY LTD |
| Project    | 212558305     |



| Sub-Matrix: SOIL<br>(Matrix: SOIL)   |                  | Clie          | nt sample ID  | SS06              | SS07              | SB02_0.1          | SB02_1.0          | SB03_0.1          |
|--------------------------------------|------------------|---------------|---------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|                                      | C                | lient samplin | g date / time | 29-Nov-2016 00:00 |
| Compound                             | CAS Number       | LOR           | Unit          | EM1614608-006     | EM1614608-007     | EM1614608-012     | EM1614608-014     | EM1614608-015     |
|                                      |                  |               | -             | Result            | Result            | Result            | Result            | Result            |
| EP231B: Perfluoroalkyl Carboxylic Ac | cids - Continued |               |               |                   |                   |                   |                   |                   |
| Perfluoroundecanoic acid             | 2058-94-8        | 0.0002        | mg/kg         | <0.0002           | <0.0002           | <0.0002           | <0.0002           | 0.0012            |
| (PFUnDA)                             |                  |               |               |                   |                   |                   |                   |                   |
| Perfluorododecanoic acid             | 307-55-1         | 0.0002        | mg/kg         | <0.0002           | <0.0002           | 0.0005            | <0.0002           | <0.0002           |
| (PFDoDA)                             |                  |               |               |                   |                   |                   |                   |                   |
| Perfluorotridecanoic acid            | 72629-94-8       | 0.0002        | mg/kg         | <0.0002           | <0.0002           | <0.0002           | <0.0002           | <0.0002           |
| (PFTrDA)                             |                  |               |               |                   |                   |                   |                   |                   |
| Perfluorotetradecanoic acid          | 376-06-7         | 0.0005        | mg/kg         | <0.0005           | <0.0005           | <0.0005           | <0.0005           | <0.0005           |
| (PFTeDA)                             |                  |               |               |                   |                   |                   |                   |                   |
| EP231C: Perfluoroalkyl Sulfonamides  |                  |               |               |                   |                   |                   |                   |                   |
| Perfluorooctane sulfonamide          | 754-91-6         | 0.0002        | mg/kg         | 0.0005            | <0.0002           | 0.0156            | <0.0002           | 0.0031            |
| (FOSA)                               |                  |               |               |                   |                   |                   |                   |                   |
| N-Methyl perfluorooctane             | 31506-32-8       | 0.0005        | mg/kg         | <0.0005           | <0.0005           | <0.0005           | <0.0005           | <0.0005           |
| sulfonamide (MeFOSA)                 |                  |               |               |                   |                   |                   |                   |                   |
| N-Ethyl perfluorooctane              | 4151-50-2        | 0.0005        | mg/kg         | <0.0005           | <0.0005           | <0.0005           | <0.0005           | <0.0005           |
| sulfonamide (EtFOSA)                 |                  |               |               |                   |                   |                   |                   |                   |
| N-Methyl perfluorooctane             | 2448-09-7        | 0.0005        | mg/kg         | <0.0005           | <0.0005           | <0.0005           | <0.0005           | <0.0005           |
| sulfonamidoethanol (MeFOSE)          |                  |               |               |                   |                   |                   |                   |                   |
| N-Ethyl perfluorooctane              | 1691-99-2        | 0.0005        | mg/kg         | <0.0005           | <0.0005           | <0.0005           | <0.0005           | <0.0005           |
| sulfonamidoethanol (EtFOSE)          |                  |               |               |                   |                   |                   |                   |                   |
| N-Methyl perfluorooctane             | 2355-31-9        | 0.0002        | mg/kg         | <0.0002           | <0.0002           | <0.0002           | <0.0002           | <0.0002           |
| sulfonamidoacetic acid               |                  |               |               |                   |                   |                   |                   |                   |
| (MeFOSAA)                            |                  |               |               |                   |                   |                   |                   |                   |
| N-Ethyl perfluorooctane              | 2991-50-6        | 0.0002        | mg/kg         | <0.0002           | <0.0002           | <0.0002           | <0.0002           | <0.0002           |
| sulfonamidoacetic acid               |                  |               |               |                   |                   |                   |                   |                   |
| (EtFOSAA)                            |                  |               |               |                   |                   |                   |                   |                   |
| EP231D: (n:2) Fluorotelomer Sulfonic | Acids            |               |               |                   |                   |                   |                   |                   |
| 4:2 Fluorotelomer sulfonic acid      | 757124-72-4      | 0.0005        | mg/kg         | <0.0005           | <0.0005           | 0.0234            | 0.0080            | <0.0005           |
| (4:2 FTS)                            |                  |               |               |                   |                   |                   |                   |                   |
| 6:2 Fluorotelomer sulfonic acid      | 27619-97-2       | 0.0005        | mg/kg         | 0.0012            | <0.0005           | 1.29              | 0.0646            | 0.0076            |
| (6:2 FTS)                            |                  |               |               |                   |                   |                   |                   |                   |
| 8:2 Fluorotelomer sulfonic acid      | 39108-34-4       | 0.0005        | mg/kg         | 0.0007            | <0.0005           | 0.154             | 0.0011            | 0.0074            |
| (8:2 FTS)                            |                  |               |               |                   |                   |                   |                   |                   |
| 10:2 Fluorotelomer sulfonic acid     | 120226-60-0      | 0.0005        | mg/kg         | <0.0005           | <0.0005           | 0.0126            | <0.0005           | 0.0013            |
| (10:2 FTS)                           |                  |               |               |                   |                   |                   |                   |                   |
| EP231P: PFAS Sums                    |                  |               |               |                   |                   |                   |                   |                   |
| Sum of PFAS                          |                  | 0.0002        | mg/kg         | 0.0362            | 0.0250            | 16.4              | 0.728             | 0.496             |

| Page       | : 10 of 26    |
|------------|---------------|
| Work Order | : EM1614608   |
| Client     | : GHD PTY LTD |
| Project    | 212558305     |



| Sub-Matrix: SOIL<br>(Matrix: SOIL) | Client sample ID  |               | SS06           | SS07              | SB02_0.1          | SB02_1.0          | SB03_0.1          |                   |
|------------------------------------|-------------------|---------------|----------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|                                    | Cl                | lient samplir | ng date / time | 29-Nov-2016 00:00 |
| Compound                           | CAS Number        | LOR           | Unit           | EM1614608-006     | EM1614608-007     | EM1614608-012     | EM1614608-014     | EM1614608-015     |
|                                    |                   |               |                | Result            | Result            | Result            | Result            | Result            |
| EP231P: PFAS Sums - Continued      |                   |               |                |                   |                   |                   |                   |                   |
| Sum of PFHxS and PFOS              | 355-46-4/1763-23- | 0.0002        | mg/kg          | 0.0329            | 0.0250            | 12.8              | 0.290             | 0.462             |
|                                    | 1                 |               |                |                   |                   |                   |                   |                   |
| Sum of PFAS (WA DER List)          |                   | 0.0002        | mg/kg          | 0.0355            | 0.0250            | 15.7              | 0.652             | 0.485             |
| EP231S: PFAS Surrogate             |                   |               |                |                   |                   |                   |                   |                   |
| 13C4-PFOS                          |                   | 0.0002        | %              | 81.0              | 92.0              | 87.0              | 117               | 79.0              |

| Page       | : 11 of 26    |
|------------|---------------|
| Work Order | EM1614608     |
| Client     | : GHD PTY LTD |
| Project    | 212558305     |



| Sub-Matrix: SOIL<br>(Matrix: SOIL)     |              | Clie           | ent sample ID     | SB03_1.0          | SB05_0.1          | SB05_1.0          | SB01_0.1          | SB01_1.0      |
|----------------------------------------|--------------|----------------|-------------------|-------------------|-------------------|-------------------|-------------------|---------------|
| · · · · · · · · · · · · · · · · · · ·  | ient sampli  | ng date / time | 29-Nov-2016 00:00 | 29-Nov-2016 00:00 | 29-Nov-2016 00:00 | 30-Nov-2016 00:00 | 30-Nov-2016 00:00 |               |
| Compound                               | CAS Number   | LOR            | Unit              | EM1614608-017     | EM1614608-018     | EM1614608-020     | EM1614608-021     | EM1614608-023 |
| ,                                      |              |                | -                 | Result            | Result            | Result            | Result            | Result        |
| A055: Moisture Content                 |              |                |                   |                   |                   |                   |                   |               |
| Moisture Content (dried @ 103°C)       |              | 1              | %                 | 15.4              | 17.0              | 12.8              | 12.2              | 19.2          |
| EA150: Particle Sizing                 |              |                |                   |                   |                   |                   |                   |               |
| +75µm                                  |              | 1              | %                 | 12                | 9                 | 12                | 28                | 10            |
| +150μm                                 |              | 1              | %                 | 5                 | 6                 | 6                 | 20                | 5             |
| +300µm                                 |              | 1              | %                 | 3                 | 4                 | 4                 | 14                | 2             |
| +425µm                                 |              | 1              | %                 | 2                 | 3                 | 2                 | 10                | 2             |
| +600µm                                 |              | 1              | %                 | 1                 | 2                 | 2                 | 8                 | 1             |
| +1180µm                                |              | 1              | %                 | <1                | <1                | <1                | 3                 | <1            |
| +2.36mm                                |              | 1              | %                 | <1                | <1                | <1                | <1                | <1            |
| +4.75mm                                |              | 1              | %                 | <1                | <1                | <1                | <1                | <1            |
| +9.5mm                                 |              | 1              | %                 | <1                | <1                | <1                | <1                | <1            |
| +19.0mm                                |              | 1              | %                 | <1                | <1                | <1                | <1                | <1            |
| +37.5mm                                |              | 1              | %                 | <1                | <1                | <1                | <1                | <1            |
| +75.0mm                                |              | 1              | %                 | <1                | <1                | <1                | <1                | <1            |
| A150: Soil Classification based on Pa  | article Size |                |                   |                   |                   |                   |                   |               |
| Clay (<2 μm)                           |              | 1              | %                 | 47                | 59                | 43                | 30                | 51            |
| Silt (2-60 µm)                         |              | 1              | %                 | 29                | 22                | 32                | 28                | 25            |
| Sand (0.06-2.00 mm)                    |              | 1              | %                 | 24                | 19                | 25                | 41                | 24            |
| Gravel (>2mm)                          |              | 1              | %                 | <1                | <1                | <1                | 1                 | <1            |
| Cobbles (>6cm)                         |              | 1              | %                 | <1                | <1                | <1                | <1                | <1            |
| A152: Soil Particle Density            |              |                |                   |                   |                   |                   |                   |               |
| Soil Particle Density (Clay/Silt/Sand) |              | 0.01           | g/cm3             | 2.70              | 2.61              | 2.70              | 2.64              | 2.68          |
| D006: Exchangeable Cations on Alka     | line Soils   |                |                   |                   |                   |                   |                   |               |
| Exchangeable Calcium                   |              | 0.2            | meq/100g          | 6.1               |                   |                   | 5.4               | 11.3          |
| Exchangeable Magnesium                 |              | 0.2            | meq/100g          | 9.8               |                   |                   | 2.9               | 8.5           |
| Exchangeable Potassium                 |              | 0.2            | meq/100g          | 0.4               |                   |                   | 0.5               | 0.5           |
| Exchangeable Sodium                    |              | 0.2            | meq/100g          | 5.9               |                   |                   | 2.0               | 3.8           |
| Cation Exchange Capacity               |              | 0.2            | meq/100g          | 22.2              |                   |                   | 10.8              | 24.1          |
| D007: Exchangeable Cations             |              |                |                   |                   |                   |                   |                   |               |
| Exchangeable Calcium                   |              | 0.1            | meq/100g          |                   |                   |                   |                   |               |
| Exchangeable Magnesium                 |              | 0.1            | meq/100g          |                   |                   |                   |                   |               |
| Exchangeable Potassium                 |              | 0.1            | meq/100g          |                   |                   |                   |                   |               |
| Exchangeable Sodium                    |              | 0.1            | meq/100g          |                   |                   |                   |                   |               |
| Cation Exchange Capacity               |              | 0.1            | meg/100g          |                   |                   |                   |                   |               |

| Page       | : 12 of 26    |
|------------|---------------|
| Work Order | EM1614608     |
| Client     | : GHD PTY LTD |
| Project    | 212558305     |



| Sub-Matrix: SOIL<br>(Matrix: SOIL)                                       |                             | Clie   | ent sample ID     | SB03_1.0          | SB05_0.1          | SB05_1.0          | SB01_0.1          | SB01_1.0      |
|--------------------------------------------------------------------------|-----------------------------|--------|-------------------|-------------------|-------------------|-------------------|-------------------|---------------|
|                                                                          | Client sampling date / time |        | 29-Nov-2016 00:00 | 29-Nov-2016 00:00 | 29-Nov-2016 00:00 | 30-Nov-2016 00:00 | 30-Nov-2016 00:00 |               |
| Compound                                                                 | CAS Number                  | LOR    | Unit              | EM1614608-017     | EM1614608-018     | EM1614608-020     | EM1614608-021     | EM1614608-023 |
|                                                                          |                             |        |                   | Result            | Result            | Result            | Result            | Result        |
| ED008: Exchangeable Cations                                              |                             |        |                   |                   |                   |                   |                   |               |
| Exchangeable Calcium                                                     |                             | 0.1    | meq/100g          |                   | 2.7               | 5.2               |                   |               |
| Exchangeable Magnesium                                                   |                             | 0.1    | meq/100g          |                   | 3.1               | 4.2               |                   |               |
| Exchangeable Potassium                                                   |                             | 0.1    | meq/100g          |                   | 0.2               | 0.2               |                   |               |
| Exchangeable Sodium                                                      |                             | 0.1    | meq/100g          |                   | 1.2               | 1.9               |                   |               |
| Cation Exchange Capacity                                                 |                             | 0.1    | meq/100g          |                   | 7.2               | 11.4              |                   |               |
| ED040S : Soluble Sulfate by ICPAES                                       |                             |        |                   |                   |                   |                   |                   |               |
| Silicon                                                                  | 7440-21-3                   | 1      | mg/kg             | 44                | 20600             | 83                | 4910              | 12500         |
| ED093S: Soluble Major Cations                                            |                             |        |                   |                   |                   |                   |                   |               |
| Potassium                                                                | 7440-09-7                   | 10     | mg/kg             | <10               | 1260              | <10               | 360               | 790           |
| EG005T: Total Metals by ICP-AES                                          |                             |        |                   |                   |                   |                   |                   |               |
| Aluminium                                                                | 7429-90-5                   | 50     | mg/kg             | 17400             | 17200             | 15600             | 8400              | 11700         |
| Iron                                                                     | 7439-89-6                   | 50     | mg/kg             | 21400             | 21900             | 20600             | 14100             | 17000         |
| EP003: Total Organic Carbon (TOC) in Soi                                 |                             |        |                   |                   |                   |                   |                   |               |
| Total Organic Carbon                                                     |                             | 0.02   | %                 | 0.16              | 0.52              | 0.12              | 0.74              | 0.36          |
| EP231A: Perfluoroalkyl Sulfonic Acids                                    |                             |        | 1                 |                   |                   |                   |                   |               |
| Perfluorobutane sulfonic acid                                            | 375-73-5                    | 0.0002 | mg/kg             | 0.0480            | <0.0002           | <0.0002           | 0.0046            | 0.0045        |
| (PFBS)                                                                   |                             |        |                   |                   |                   |                   |                   |               |
| Perfluoropentane sulfonic acid                                           | 2706-91-4                   | 0.0002 | mg/kg             | 0.0415            | <0.0002           | <0.0002           | 0.0045            | 0.0030        |
| (PFPeS)                                                                  |                             |        |                   |                   |                   |                   |                   |               |
| Perfluorohexane sulfonic acid                                            | 355-46-4                    | 0.0002 | mg/kg             | 0.169             | 0.0009            | <0.0002           | 0.0665            | 0.0078        |
| (PFHxS)                                                                  |                             |        |                   |                   |                   |                   |                   |               |
| Perfluoroheptane sulfonic acid                                           | 375-92-8                    | 0.0002 | mg/kg             | 0.0011            | <0.0002           | <0.0002           | 0.0070            | <0.0002       |
| (PFHpS)                                                                  |                             |        |                   |                   |                   |                   |                   |               |
| Perfluorooctane sulfonic acid                                            | 1763-23-1                   | 0.0002 | mg/kg             | 0.0371            | 0.0038            | <0.0002           | 0.295             | 0.0027        |
| (PFOS)                                                                   | 07000 10 -                  | 0.0000 | malka             | 0.0004            | <0.0002           | <0.0002           | <0.0002           | <0.0002       |
| Perfluorodecane sulfonic acid                                            | 67906-42-7                  | 0.0002 | mg/kg             | 0.0004            | <0.0002           | <0.0002           | <0.0002           | <0.0002       |
| (PFDS)                                                                   |                             |        |                   |                   |                   |                   |                   |               |
| EP231B: Perfluoroalkyl Carboxylic Acids<br>Perfluorobutanoic acid (PFBA) | 275 00 1                    | 0.001  | ma/ka             | <0.001            | <0.001            | <0.001            | <0.001            | <0.001        |
| Perfluoropentanoic acid (PFBA) Perfluoropentanoic acid (PFPeA)           | 375-22-4                    |        | mg/kg<br>mg/kg    | 0.0395            | 0.0005            | <0.001            | <0.001<br>0.0043  | 0.0038        |
| Perfluorohexanoic acid (PFPeA)                                           | 2706-90-3                   |        |                   | 0.0395            | 0.0005            | <0.0002           | 0.0043            | 0.0161        |
| Perfluoroheptanoic acid (PFHpA)                                          | 307-24-4<br>375-85-9        |        | mg/kg<br>mg/kg    | 0.0267            | 0.0013            | <0.0002           | 0.0019            | 0.0006        |
| Perfluorooctanoic acid (PFDA)                                            |                             |        | mg/kg             | 0.0267            | 0.0013            | <0.0002           | 0.0019            | 0.0006        |
| Perfluorononanoic acid (PFNA)                                            | 335-67-1<br>375-95-1        |        | mg/kg             | <0.002            | <0.0035           | <0.0002           | <0.0079           | <0.0002       |
| Perfluorodecanoic acid (PFDA)                                            |                             |        |                   | <0.0002           | <0.0002           | <0.0002           | 0.0002            | <0.0002       |
| remuorouecanoic acid (PrDA)                                              | 335-76-2                    | 0.0002 | mg/kg             | <0.0002           | <0.0002           | <0.0002           | 0.0004            | <0.000Z       |

| Page       | : 13 of 26    |
|------------|---------------|
| Work Order | : EM1614608   |
| Client     | : GHD PTY LTD |
| Project    | 212558305     |



| Sub-Matrix: SOIL<br>(Matrix: SOIL)   |                  | Clie          | nt sample ID   | SB03_1.0          | SB05_0.1          | SB05_1.0          | SB01_0.1          | SB01_1.0          |
|--------------------------------------|------------------|---------------|----------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|                                      | CI               | lient samplin | ng date / time | 29-Nov-2016 00:00 | 29-Nov-2016 00:00 | 29-Nov-2016 00:00 | 30-Nov-2016 00:00 | 30-Nov-2016 00:00 |
| Compound                             | CAS Number       | LOR           | Unit           | EM1614608-017     | EM1614608-018     | EM1614608-020     | EM1614608-021     | EM1614608-023     |
|                                      |                  |               |                | Result            | Result            | Result            | Result            | Result            |
| EP231B: Perfluoroalkyl Carboxylic Ac | cids - Continued |               |                |                   |                   |                   |                   |                   |
| Perfluoroundecanoic acid             | 2058-94-8        | 0.0002        | mg/kg          | <0.0002           | <0.0002           | <0.0002           | <0.0002           | <0.0002           |
| (PFUnDA)                             |                  |               |                |                   |                   |                   |                   |                   |
| Perfluorododecanoic acid             | 307-55-1         | 0.0002        | mg/kg          | <0.0002           | <0.0002           | <0.0002           | <0.0002           | <0.0002           |
| (PFDoDA)                             |                  |               |                |                   |                   |                   |                   |                   |
| Perfluorotridecanoic acid            | 72629-94-8       | 0.0002        | mg/kg          | <0.0002           | <0.0002           | <0.0002           | <0.0002           | <0.0002           |
| (PFTrDA)                             |                  |               |                |                   |                   |                   |                   |                   |
| Perfluorotetradecanoic acid          | 376-06-7         | 0.0005        | mg/kg          | <0.0005           | <0.0005           | <0.0005           | <0.0005           | <0.0005           |
| (PFTeDA)                             |                  |               |                |                   |                   |                   |                   |                   |
| EP231C: Perfluoroalkyl Sulfonamides  |                  |               |                |                   |                   |                   |                   |                   |
| Perfluorooctane sulfonamide          | 754-91-6         | 0.0002        | mg/kg          | <0.0002           | <0.0002           | <0.0002           | 0.0004            | <0.0002           |
| (FOSA)                               |                  |               |                |                   |                   |                   |                   |                   |
| N-Methyl perfluorooctane             | 31506-32-8       | 0.0005        | mg/kg          | <0.0005           | <0.0005           | <0.0005           | <0.0005           | <0.0005           |
| sulfonamide (MeFOSA)                 |                  |               |                |                   |                   |                   |                   |                   |
| N-Ethyl perfluorooctane              | 4151-50-2        | 0.0005        | mg/kg          | <0.0005           | <0.0005           | <0.0005           | <0.0005           | <0.0005           |
| sulfonamide (EtFOSA)                 |                  |               |                |                   |                   |                   |                   |                   |
| N-Methyl perfluorooctane             | 2448-09-7        | 0.0005        | mg/kg          | <0.0005           | <0.0005           | <0.0005           | <0.0005           | <0.0005           |
| sulfonamidoethanol (MeFOSE)          |                  |               |                |                   |                   |                   |                   |                   |
| N-Ethyl perfluorooctane              | 1691-99-2        | 0.0005        | mg/kg          | <0.0005           | <0.0005           | <0.0005           | <0.0005           | <0.0005           |
| sulfonamidoethanol (EtFOSE)          |                  |               |                |                   |                   |                   |                   |                   |
| N-Methyl perfluorooctane             | 2355-31-9        | 0.0002        | mg/kg          | <0.0002           | <0.0002           | <0.0002           | <0.0002           | <0.0002           |
| sulfonamidoacetic acid               |                  |               |                |                   |                   |                   |                   |                   |
| (MeFOSAA)                            |                  |               |                |                   |                   |                   |                   |                   |
| N-Ethyl perfluorooctane              | 2991-50-6        | 0.0002        | mg/kg          | <0.0002           | <0.0002           | <0.0002           | <0.0002           | <0.0002           |
| sulfonamidoacetic acid               |                  |               |                |                   |                   |                   |                   |                   |
| (EtFOSAA)                            |                  |               |                |                   |                   |                   |                   |                   |
| EP231D: (n:2) Fluorotelomer Sulfonic |                  | 0.000         |                | 0.0007            | 0.0007            | 0.0077            | 0.0007            | 0.5555            |
| 4:2 Fluorotelomer sulfonic acid      | 757124-72-4      | 0.0005        | mg/kg          | <0.0005           | <0.0005           | <0.0005           | <0.0005           | <0.0005           |
| (4:2 FTS)                            |                  | 0.0005        |                | 0.0457            | 0.0000            | -0.0005           | 0.0400            | 0.0000            |
| 6:2 Fluorotelomer sulfonic acid      | 27619-97-2       | 0.0005        | mg/kg          | 0.0157            | 0.0006            | <0.0005           | 0.0130            | 0.0008            |
| (6:2 FTS)                            |                  | 0.0005        |                | -0.0005           | -0.0005           | -0.0005           | 0.00/=            | 10.0005           |
| 8:2 Fluorotelomer sulfonic acid      | 39108-34-4       | 0.0005        | mg/kg          | <0.0005           | <0.0005           | <0.0005           | 0.0017            | <0.0005           |
| (8:2 FTS)                            | 400000 00 0      | 0.0005        | malka          | <0.0005           | <0.0005           | <0.0005           | <0.0005           | <0.0005           |
| 10:2 Fluorotelomer sulfonic acid     | 120226-60-0      | 0.0005        | mg/kg          | <0.0005           | <0.0005           | <0.0005           | <0.0005           | <0.0005           |
| (10:2 FTS)                           |                  |               |                |                   |                   |                   |                   |                   |
| EP231P: PFAS Sums                    |                  | 0.0000        |                |                   |                   | -0.0000           |                   |                   |
| Sum of PFAS                          |                  | 0.0002        | mg/kg          | 0.535             | 0.0121            | <0.0002           | 0.426             | 0.0399            |

| Page       | : 14 of 26    |
|------------|---------------|
| Work Order | : EM1614608   |
| Client     | : GHD PTY LTD |
| Project    | 212558305     |



| Sub-Matrix: SOIL<br>(Matrix: SOIL) | Client sample ID  |              |                | SB03_1.0          | SB05_0.1          | SB05_1.0          | SB01_0.1          | SB01_1.0          |
|------------------------------------|-------------------|--------------|----------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|                                    | Cl                | ient sampliı | ng date / time | 29-Nov-2016 00:00 | 29-Nov-2016 00:00 | 29-Nov-2016 00:00 | 30-Nov-2016 00:00 | 30-Nov-2016 00:00 |
| Compound                           | CAS Number        | LOR          | Unit           | EM1614608-017     | EM1614608-018     | EM1614608-020     | EM1614608-021     | EM1614608-023     |
|                                    |                   |              |                | Result            | Result            | Result            | Result            | Result            |
| EP231P: PFAS Sums - Continued      |                   |              |                |                   |                   |                   |                   |                   |
| Sum of PFHxS and PFOS              | 355-46-4/1763-23- | 0.0002       | mg/kg          | 0.206             | 0.0047            | <0.0002           | 0.362             | 0.0105            |
|                                    | 1                 |              |                |                   |                   |                   |                   |                   |
| Sum of PFAS (WA DER List)          |                   | 0.0002       | mg/kg          | 0.492             | 0.0121            | <0.0002           | 0.414             | 0.0369            |
| EP231S: PFAS Surrogate             |                   |              |                |                   |                   |                   |                   |                   |
| 13C4-PFOS                          |                   | 0.0002       | %              | 102               | 113               | 102               | 113               | 79.0              |

| Page       | : 15 of 26    |
|------------|---------------|
| Work Order | : EM1614608   |
| Client     | : GHD PTY LTD |
| Project    | 212558305     |



| Sub-Matrix: SOIL Client sa (Matrix: SOIL) |              |                |                   | SB04_0.15         | SB04_2.0          | MW01_0.1          | MW01_9.0          | MW02_0.1      |
|-------------------------------------------|--------------|----------------|-------------------|-------------------|-------------------|-------------------|-------------------|---------------|
| · · · · · · · · · · · · · · · · · · ·     | ient sampli  | ng date / time | 30-Nov-2016 00:00 |               |
| Compound                                  | CAS Number   | LOR            | Unit              | EM1614608-028     | EM1614608-031     | EM1614608-035     | EM1614608-037     | EM1614608-038 |
|                                           |              |                |                   | Result            | Result            | Result            | Result            | Result        |
| EA055: Moisture Content                   |              |                |                   |                   |                   |                   |                   |               |
| Moisture Content (dried @ 103°C)          |              | 1              | %                 | 23.2              | 16.1              | 10.4              | 14.5              | 17.8          |
| EA150: Particle Sizing                    |              |                |                   |                   |                   |                   |                   |               |
| +75µm                                     |              | 1              | %                 | 8                 | 14                | 25                | 23                | 9             |
| +150μm                                    |              | 1              | %                 | 4                 | 7                 | 19                | 14                | 5             |
| +300µm                                    |              | 1              | %                 | 2                 | 3                 | 14                | 10                | 2             |
| +425µm                                    |              | 1              | %                 | 1                 | 2                 | 11                | 8                 | 2             |
| +600µm                                    |              | 1              | %                 | <1                | <1                | 8                 | 6                 | 1             |
| +1180μm                                   |              | 1              | %                 | <1                | <1                | 3                 | 3                 | <1            |
| +2.36mm                                   |              | 1              | %                 | <1                | <1                | <1                | <1                | <1            |
| +4.75mm                                   |              | 1              | %                 | <1                | <1                | <1                | <1                | <1            |
| +9.5mm                                    |              | 1              | %                 | <1                | <1                | <1                | <1                | <1            |
| +19.0mm                                   |              | 1              | %                 | <1                | <1                | <1                | <1                | <1            |
| +37.5mm                                   |              | 1              | %                 | <1                | <1                | <1                | <1                | <1            |
| +75.0mm                                   |              | 1              | %                 | <1                | <1                | <1                | <1                | <1            |
| A150: Soil Classification based on Pa     | article Size |                |                   |                   |                   |                   |                   |               |
| Clay (<2 μm)                              |              | 1              | %                 | 59                | 41                | 43                | 35                | 53            |
| Silt (2-60 µm)                            |              | 1              | %                 | 23                | 32                | 26                | 34                | 29            |
| Sand (0.06-2.00 mm)                       |              | 1              | %                 | 18                | 27                | 30                | 30                | 18            |
| Gravel (>2mm)                             |              | 1              | %                 | <1                | <1                | 1                 | 1                 | <1            |
| Cobbles (>6cm)                            |              | 1              | %                 | <1                | <1                | <1                | <1                | <1            |
| A152: Soil Particle Density               |              |                |                   |                   |                   |                   |                   |               |
| Soil Particle Density (Clay/Silt/Sand)    |              | 0.01           | g/cm3             | 2.57              | 2.65              | 2.64              | 2.67              | 2.67          |
| D006: Exchangeable Cations on Alka        | line Soils   |                |                   |                   |                   |                   |                   |               |
| Exchangeable Calcium                      |              | 0.2            | meq/100g          | 5.2               | 6.3               | 1.8               | 6.0               | 7.7           |
| Exchangeable Magnesium                    |              | 0.2            | meq/100g          | 5.4               | 10.0              | 1.0               | 8.3               | 10.2          |
| Exchangeable Potassium                    |              | 0.2            | meq/100g          | 0.7               | 0.5               | 0.2               | 0.4               | 0.4           |
| Exchangeable Sodium                       |              | 0.2            | meq/100g          | 14.0              | 5.9               | 1.6               | 5.1               | 5.9           |
| Cation Exchange Capacity                  |              | 0.2            | meq/100g          | 25.3              | 22.8              | 4.6               | 19.8              | 24.2          |
| D007: Exchangeable Cations                |              |                |                   |                   |                   |                   |                   |               |
| Exchangeable Calcium                      |              | 0.1            | meq/100g          |                   |                   |                   |                   |               |
| Exchangeable Magnesium                    |              | 0.1            | meq/100g          |                   |                   |                   |                   |               |
| Exchangeable Potassium                    |              | 0.1            | meq/100g          |                   |                   |                   |                   |               |
| Exchangeable Sodium                       |              | 0.1            | meq/100g          |                   |                   |                   |                   |               |
| Cation Exchange Capacity                  |              | 0.1            | meg/100g          |                   |                   |                   |                   |               |

| Page       | : 16 of 26    |
|------------|---------------|
| Work Order | EM1614608     |
| Client     | : GHD PTY LTD |
| Project    | 212558305     |



| Sub-Matrix: SOIL<br>(Matrix: SOIL)       |            | Clie        | ent sample ID  | SB04_0.15         | SB04_2.0          | MW01_0.1          | MW01_9.0          | MW02_0.1          |
|------------------------------------------|------------|-------------|----------------|-------------------|-------------------|-------------------|-------------------|-------------------|
| · · · · ·                                | CI         | ient sampli | ng date / time | 30-Nov-2016 00:00 |
| Compound                                 | CAS Number | LOR         | Unit           | EM1614608-028     | EM1614608-031     | EM1614608-035     | EM1614608-037     | EM1614608-038     |
|                                          |            |             |                | Result            | Result            | Result            | Result            | Result            |
| ED008: Exchangeable Cations              |            |             |                |                   |                   |                   |                   |                   |
| Exchangeable Calcium                     |            | 0.1         | meq/100g       |                   |                   |                   |                   |                   |
| Exchangeable Magnesium                   |            | 0.1         | meq/100g       |                   |                   |                   |                   |                   |
| Exchangeable Potassium                   |            | 0.1         | meq/100g       |                   |                   |                   |                   |                   |
| Exchangeable Sodium                      |            | 0.1         | meq/100g       |                   |                   |                   |                   |                   |
| Cation Exchange Capacity                 |            | 0.1         | meq/100g       |                   |                   |                   |                   |                   |
| ED040S : Soluble Sulfate by ICPAES       |            |             |                |                   |                   |                   |                   |                   |
| Silicon                                  | 7440-21-3  | 1           | mg/kg          | 36900             | 24                | 8300              | 51                | 17100             |
| ED093S: Soluble Major Cations            |            |             |                |                   |                   |                   |                   |                   |
| Potassium                                | 7440-09-7  | 10          | mg/kg          | 2400              | <10               | 460               | <10               | 1160              |
| EG005T: Total Metals by ICP-AES          |            |             |                |                   |                   |                   |                   |                   |
| Aluminium                                | 7429-90-5  | 50          | mg/kg          | 24600             | 12900             | 5530              | 15600             | 16300             |
| Iron                                     | 7439-89-6  | 50          | mg/kg          | 28800             | 17000             | 9080              | 21000             | 20800             |
| EP003: Total Organic Carbon (TOC) in Soi |            |             |                |                   |                   |                   |                   |                   |
| Total Organic Carbon                     |            | 0.02        | %              | 0.37              | 0.11              | 0.26              | 0.05              | 0.30              |
| EP231A: Perfluoroalkyl Sulfonic Acids    |            |             |                |                   |                   |                   |                   |                   |
| Perfluorobutane sulfonic acid            | 375-73-5   | 0.0002      | mg/kg          | 0.0043            | 0.0084            | 0.0033            | 0.0007            | 0.0005            |
| (PFBS)                                   |            |             | 0.0            |                   |                   |                   |                   |                   |
| Perfluoropentane sulfonic acid           | 2706-91-4  | 0.0002      | mg/kg          | 0.0045            | 0.0013            | 0.0036            | 0.0006            | 0.0009            |
| (PFPeS)                                  |            |             |                |                   |                   |                   |                   |                   |
| Perfluorohexane sulfonic acid            | 355-46-4   | 0.0002      | mg/kg          | 0.0578            | 0.0019            | 0.0466            | 0.0017            | 0.0018            |
| (PFHxS)                                  |            |             |                |                   |                   |                   |                   |                   |
| Perfluoroheptane sulfonic acid           | 375-92-8   | 0.0002      | mg/kg          | 0.0185            | 0.0003            | 0.0160            | 0.0003            | <0.0002           |
| (PFHpS)                                  |            |             |                |                   |                   |                   |                   |                   |
| Perfluorooctane sulfonic acid            | 1763-23-1  | 0.0002      | mg/kg          | 0.691             | 0.0128            | 1.31              | 0.0377            | 0.0008            |
| (PFOS)                                   |            | 0.0000      |                |                   | -0.0000           |                   | -0.0000           | -0.0000           |
| Perfluorodecane sulfonic acid            | 67906-42-7 | 0.0002      | mg/kg          | 0.0003            | <0.0002           | 0.0018            | <0.0002           | <0.0002           |
| (PFDS)                                   |            |             |                |                   |                   |                   |                   |                   |
| EP231B: Perfluoroalkyl Carboxylic Acids  |            | 0.001       |                | -0.001            | 10.001            | 10 001            | 10.001            | 10.001            |
| Perfluorobutanoic acid (PFBA)            | 375-22-4   |             | mg/kg          | < 0.001           | < 0.001           | <0.001            | < 0.001           | < 0.001           |
| Perfluoropentanoic acid (PFPeA)          | 2706-90-3  |             | mg/kg          | 0.0047            | 0.0037            | 0.0030            | 0.0007            | < 0.0002          |
| Perfluorohexanoic acid (PFHxA)           | 307-24-4   | 0.0002      | mg/kg          | 0.0192            | 0.0125            | 0.0202            | 0.0017            | 0.0005            |
| Perfluoroheptanoic acid (PFHpA)          | 375-85-9   | 0.0002      | mg/kg          | 0.0025            | < 0.0002          | 0.0028            | < 0.0002          | < 0.0002          |
| Perfluorooctanoic acid (PFOA)            | 335-67-1   | 0.0002      | mg/kg          | 0.0143            | 0.0002            | 0.0158            | 0.0005            | < 0.0002          |
| Perfluorononanoic acid (PFNA)            | 375-95-1   | 0.0002      | mg/kg          | <0.0002           | <0.0002           | 0.0005            | <0.0002           | < 0.0002          |
| Perfluorodecanoic acid (PFDA)            | 335-76-2   | 0.0002      | mg/kg          | <0.0002           | <0.0002           | 0.0014            | <0.0002           | <0.0002           |

| Page       | : 17 of 26    |
|------------|---------------|
| Work Order | : EM1614608   |
| Client     | : GHD PTY LTD |
| Project    | 212558305     |



| Sub-Matrix: SOIL<br>(Matrix: SOIL)   |                  | Clie          | nt sample ID   | SB04_0.15         | SB04_2.0          | MW01_0.1          | MW01_9.0          | MW02_0.1          |
|--------------------------------------|------------------|---------------|----------------|-------------------|-------------------|-------------------|-------------------|-------------------|
| ,                                    | C                | lient samplir | ng date / time | 30-Nov-2016 00:00 |
| Compound                             | CAS Number       | LOR           | Unit           | EM1614608-028     | EM1614608-031     | EM1614608-035     | EM1614608-037     | EM1614608-038     |
|                                      |                  |               | -              | Result            | Result            | Result            | Result            | Result            |
| EP231B: Perfluoroalkyl Carboxylic Ac | cids - Continued |               |                |                   |                   |                   |                   |                   |
| Perfluoroundecanoic acid             | 2058-94-8        | 0.0002        | mg/kg          | <0.0002           | <0.0002           | <0.0002           | <0.0002           | <0.0002           |
| (PFUnDA)                             |                  |               |                |                   |                   |                   |                   |                   |
| Perfluorododecanoic acid             | 307-55-1         | 0.0002        | mg/kg          | <0.0002           | <0.0002           | <0.0002           | <0.0002           | <0.0002           |
| (PFDoDA)                             |                  |               |                |                   |                   |                   |                   |                   |
| Perfluorotridecanoic acid            | 72629-94-8       | 0.0002        | mg/kg          | <0.0002           | <0.0002           | <0.0002           | <0.0002           | <0.0002           |
| (PFTrDA)                             |                  |               |                |                   |                   |                   |                   |                   |
| Perfluorotetradecanoic acid          | 376-06-7         | 0.0005        | mg/kg          | <0.0005           | <0.0005           | <0.0005           | <0.0005           | <0.0005           |
| (PFTeDA)                             |                  |               |                |                   |                   |                   |                   |                   |
| EP231C: Perfluoroalkyl Sulfonamides  |                  |               |                |                   |                   |                   |                   |                   |
| Perfluorooctane sulfonamide          | 754-91-6         | 0.0002        | mg/kg          | 0.0004            | <0.0002           | 0.0014            | <0.0002           | <0.0002           |
| (FOSA)                               |                  |               |                |                   |                   |                   |                   |                   |
| N-Methyl perfluorooctane             | 31506-32-8       | 0.0005        | mg/kg          | <0.0005           | <0.0005           | <0.0005           | <0.0005           | <0.0005           |
| sulfonamide (MeFOSA)                 |                  |               |                |                   |                   |                   |                   |                   |
| N-Ethyl perfluorooctane              | 4151-50-2        | 0.0005        | mg/kg          | <0.0005           | <0.0005           | <0.0005           | <0.0005           | <0.0005           |
| sulfonamide (EtFOSA)                 |                  |               |                |                   |                   |                   |                   |                   |
| N-Methyl perfluorooctane             | 2448-09-7        | 0.0005        | mg/kg          | <0.0005           | <0.0005           | <0.0005           | <0.0005           | <0.0005           |
| sulfonamidoethanol (MeFOSE)          |                  |               |                |                   |                   |                   |                   |                   |
| N-Ethyl perfluorooctane              | 1691-99-2        | 0.0005        | mg/kg          | <0.0005           | <0.0005           | <0.0005           | <0.0005           | <0.0005           |
| sulfonamidoethanol (EtFOSE)          |                  |               |                |                   |                   |                   |                   |                   |
| N-Methyl perfluorooctane             | 2355-31-9        | 0.0002        | mg/kg          | <0.0002           | <0.0002           | <0.0002           | <0.0002           | <0.0002           |
| sulfonamidoacetic acid               |                  |               |                |                   |                   |                   |                   |                   |
| (MeFOSAA)                            |                  |               |                |                   |                   |                   |                   |                   |
| N-Ethyl perfluorooctane              | 2991-50-6        | 0.0002        | mg/kg          | <0.0002           | <0.0002           | <0.0002           | <0.0002           | <0.0002           |
| sulfonamidoacetic acid               |                  |               |                |                   |                   |                   |                   |                   |
| (EtFOSAA)                            |                  |               |                |                   |                   |                   |                   |                   |
| EP231D: (n:2) Fluorotelomer Sulfonic |                  |               |                |                   |                   |                   |                   |                   |
| 4:2 Fluorotelomer sulfonic acid      | 757124-72-4      | 0.0005        | mg/kg          | <0.0005           | <0.0005           | <0.0005           | <0.0005           | <0.0005           |
| (4:2 FTS)                            |                  | 0.0005        |                |                   |                   |                   |                   | 0.0005            |
| 6:2 Fluorotelomer sulfonic acid      | 27619-97-2       | 0.0005        | mg/kg          | 0.0537            | 0.0010            | 0.0362            | 0.0007            | <0.0005           |
| (6:2 FTS)                            |                  | 0.0005        |                | <b>• • •</b> • •  | -0.0005           | A 4/6-            | -0.0005           | .0.0005           |
| 8:2 Fluorotelomer sulfonic acid      | 39108-34-4       | 0.0005        | mg/kg          | 0.0044            | <0.0005           | 0.0185            | <0.0005           | <0.0005           |
| (8:2 FTS)                            |                  | 0.0005        |                | -0.0005           | -0.0005           | -0.0005           | -0.0005           | 10.0005           |
| 10:2 Fluorotelomer sulfonic acid     | 120226-60-0      | 0.0005        | mg/kg          | <0.0005           | <0.0005           | <0.0005           | <0.0005           | <0.0005           |
| (10:2 FTS)                           |                  |               |                |                   |                   |                   |                   |                   |
| EP231P: PFAS Sums                    |                  |               |                |                   |                   |                   |                   |                   |
| Sum of PFAS                          |                  | 0.0002        | mg/kg          | 0.876             | 0.0421            | 1.48              | 0.0446            | 0.0045            |

| Page       | : 18 of 26    |
|------------|---------------|
| Work Order | : EM1614608   |
| Client     | : GHD PTY LTD |
| Project    | 212558305     |



| Sub-Matrix: SOIL<br>(Matrix: SOIL) | Client sample ID  |               |                | SB04_0.15         | SB04_2.0          | MW01_0.1          | MW01_9.0          | MW02_0.1          |
|------------------------------------|-------------------|---------------|----------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|                                    | Cl                | lient samplir | ng date / time | 30-Nov-2016 00:00 |
| Compound                           | CAS Number        | LOR           | Unit           | EM1614608-028     | EM1614608-031     | EM1614608-035     | EM1614608-037     | EM1614608-038     |
|                                    |                   |               |                | Result            | Result            | Result            | Result            | Result            |
| EP231P: PFAS Sums - Continued      |                   |               |                |                   |                   |                   |                   |                   |
| Sum of PFHxS and PFOS              | 355-46-4/1763-23- | 0.0002        | mg/kg          | 0.749             | 0.0147            | 1.36              | 0.0394            | 0.0026            |
|                                    | 1                 |               |                |                   |                   |                   |                   |                   |
| Sum of PFAS (WA DER List)          |                   | 0.0002        | mg/kg          | 0.852             | 0.0405            | 1.46              | 0.0437            | 0.0036            |
| EP231S: PFAS Surrogate             |                   |               |                |                   |                   |                   |                   |                   |
| 13C4-PFOS                          |                   | 0.0002        | %              | 120               | 109               | 105               | 91.0              | 76.0              |

| Page       | : 19 of 26    |
|------------|---------------|
| Work Order | : EM1614608   |
| Client     | : GHD PTY LTD |
| Project    | 212558305     |



| Sub-Matrix: SOIL<br>(Matrix: SOIL)     |              | Client sample ID |          | MW02_13.5         | MW03_0.1          | MW03_1.0          | FD02              | FD03              |
|----------------------------------------|--------------|------------------|----------|-------------------|-------------------|-------------------|-------------------|-------------------|
| Client sampling date / time            |              |                  |          | 30-Nov-2016 00:00 |
| Compound                               | CAS Number   | LOR              | Unit     | EM1614608-040     | EM1614608-041     | EM1614608-042     | EM1614608-043     | EM1614608-044     |
|                                        |              |                  | -        | Result            | Result            | Result            | Result            | Result            |
| A055: Moisture Content                 |              |                  |          |                   |                   |                   |                   |                   |
| Moisture Content (dried @ 103°C)       |              | 1                | %        | 12.9              | 11.2              | 14.1              | 18.4              | 15.3              |
| A150: Particle Sizing                  |              |                  |          |                   |                   |                   |                   |                   |
| +75µm                                  |              | 1                | %        | 87                | 42                | 22                |                   |                   |
| +150µm                                 |              | 1                | %        | 83                | 35                | 16                |                   |                   |
| +300µm                                 |              | 1                | %        | 69                | 29                | 12                |                   |                   |
| +425µm                                 |              | 1                | %        | 42                | 25                | 10                |                   |                   |
| +600µm                                 |              | 1                | %        | 41                | 20                | 8                 |                   |                   |
| +1180μm                                |              | 1                | %        | 20                | 12                | 4                 |                   |                   |
| +2.36mm                                |              | 1                | %        | 5                 | 6                 | <1                |                   |                   |
| +4.75mm                                |              | 1                | %        | <1                | 2                 | <1                |                   |                   |
| +9.5mm                                 |              | 1                | %        | <1                | <1                | <1                |                   |                   |
| +19.0mm                                |              | 1                | %        | <1                | <1                | <1                |                   |                   |
| +37.5mm                                |              | 1                | %        | <1                | <1                | <1                |                   |                   |
| +75.0mm                                |              | 1                | %        | <1                | <1                | <1                |                   |                   |
| A150: Soil Classification based on Pa  | article Size |                  |          |                   |                   |                   |                   |                   |
| Clay (<2 μm)                           |              | 1                | %        | 4                 | 27                | 42                |                   |                   |
| Silt (2-60 µm)                         |              | 1                | %        | 6                 | 20                | 24                |                   |                   |
| Sand (0.06-2.00 mm)                    |              | 1                | %        | 81                | 46                | 32                |                   |                   |
| Gravel (>2mm)                          |              | 1                | %        | 9                 | 7                 | 2                 |                   |                   |
| Cobbles (>6cm)                         |              | 1                | %        | <1                | <1                | <1                |                   |                   |
| A152: Soil Particle Density            |              |                  |          |                   |                   |                   |                   |                   |
| Soil Particle Density (Clay/Silt/Sand) |              | 0.01             | g/cm3    | 2.63              | 2.67              | 2.68              |                   |                   |
| D006: Exchangeable Cations on Alka     | line Soils   |                  |          |                   |                   |                   |                   |                   |
| Exchangeable Calcium                   |              | 0.2              | meq/100g | 1.2               |                   | 8.1               |                   |                   |
| Exchangeable Magnesium                 |              | 0.2              | meq/100g | 1.1               |                   | 7.4               |                   |                   |
| Exchangeable Potassium                 |              | 0.2              | meq/100g | <0.2              |                   | 0.5               |                   |                   |
| Exchangeable Sodium                    |              | 0.2              | meq/100g | 1.8               |                   | 5.0               |                   |                   |
| Cation Exchange Capacity               |              | 0.2              | meq/100g | 4.1               |                   | 21.0              |                   |                   |
| D007: Exchangeable Cations             |              |                  |          |                   |                   |                   |                   |                   |
| Exchangeable Calcium                   |              | 0.1              | meq/100g |                   | 6.3               |                   |                   |                   |
| Exchangeable Magnesium                 |              | 0.1              | meq/100g |                   | 4.2               |                   |                   |                   |
| Exchangeable Potassium                 |              | 0.1              | meq/100g |                   | 0.4               |                   |                   |                   |
| Exchangeable Sodium                    |              | 0.1              | meq/100g |                   | 0.6               |                   |                   |                   |
| Cation Exchange Capacity               |              | 0.1              | meg/100g |                   | 11.4              |                   |                   |                   |

| Page       | : 20 of 26    |
|------------|---------------|
| Work Order | : EM1614608   |
| Client     | : GHD PTY LTD |
| Project    | 212558305     |



| Sub-Matrix: SOIL<br>(Matrix: SOIL)                                |            |              | MW02_13.5      | MW03_0.1          | MW03_1.0          | FD02              | FD03              |                   |
|-------------------------------------------------------------------|------------|--------------|----------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|                                                                   | C          | lient sampli | ng date / time | 30-Nov-2016 00:00 |
| Compound                                                          | CAS Number | LOR          | Unit           | EM1614608-040     | EM1614608-041     | EM1614608-042     | EM1614608-043     | EM1614608-044     |
|                                                                   |            |              |                | Result            | Result            | Result            | Result            | Result            |
| ED008: Exchangeable Cations                                       |            |              |                |                   |                   |                   |                   |                   |
| Exchangeable Calcium                                              |            | 0.1          | meq/100g       |                   |                   |                   |                   |                   |
| Exchangeable Magnesium                                            |            | 0.1          | meq/100g       |                   |                   |                   |                   |                   |
| Exchangeable Potassium                                            |            | 0.1          | meq/100g       |                   |                   |                   |                   |                   |
| Exchangeable Sodium                                               |            | 0.1          | meq/100g       |                   |                   |                   |                   |                   |
| Cation Exchange Capacity                                          |            | 0.1          | meq/100g       |                   |                   |                   |                   |                   |
| ED040S : Soluble Sulfate by ICPAES                                |            |              |                |                   |                   |                   |                   |                   |
| Silicon                                                           | 7440-21-3  | 1            | mg/kg          | 153               | 2700              | 150               | 9870              | 33                |
| ED093S: Soluble Major Cations                                     |            |              |                |                   |                   |                   |                   |                   |
| Potassium                                                         | 7440-09-7  | 10           | mg/kg          | <10               | 180               | <10               | 600               | <10               |
| EG005T: Total Metals by ICP-AES                                   |            |              |                |                   |                   |                   |                   |                   |
| Aluminium                                                         | 7429-90-5  | 50           | mg/kg          | 2580              | 13000             | 11500             | 17500             | 11200             |
| Iron                                                              | 7439-89-6  | 50           | mg/kg          | 4480              | 17200             | 17300             |                   |                   |
| EP003: Total Organic Carbon (TOC) in Soi                          |            |              |                |                   |                   |                   |                   |                   |
| Total Organic Carbon                                              |            | 0.02         | %              | <0.02             | 0.47              | 0.16              | 0.38              | 0.08              |
| EP231A: Perfluoroalkyl Sulfonic Acids                             |            |              |                |                   |                   |                   |                   |                   |
| Perfluorobutane sulfonic acid                                     | 375-73-5   | 0.0002       | mg/kg          | <0.0002           | <0.0002           | 0.0006            | 0.0060            | 0.0140            |
| (PFBS)                                                            |            |              | 0.0            |                   |                   |                   |                   |                   |
| Perfluoropentane sulfonic acid                                    | 2706-91-4  | 0.0002       | mg/kg          | <0.0002           | <0.0002           | 0.0002            | 0.0041            | 0.0088            |
| (PFPeS)                                                           |            |              |                |                   |                   |                   |                   |                   |
| Perfluorohexane sulfonic acid                                     | 355-46-4   | 0.0002       | mg/kg          | <0.0002           | 0.0020            | 0.0007            | 0.0192            | 0.0003            |
| (PFHxS)                                                           |            |              |                |                   |                   |                   |                   |                   |
| Perfluoroheptane sulfonic acid                                    | 375-92-8   | 0.0002       | mg/kg          | <0.0002           | 0.0002            | <0.0002           | 0.0003            | <0.0002           |
| (PFHpS)                                                           |            |              |                |                   |                   |                   |                   |                   |
| Perfluorooctane sulfonic acid                                     | 1763-23-1  | 0.0002       | mg/kg          | <0.0002           | 0.0143            | 0.0009            | 0.0123            | 0.0008            |
| (PFOS)                                                            |            | 0.0000       |                | -0.0000           | -0.0000           | 10 0000           | 10.0000           | -0.0000           |
| Perfluorodecane sulfonic acid                                     | 67906-42-7 | 0.0002       | mg/kg          | <0.0002           | <0.0002           | <0.0002           | <0.0002           | <0.0002           |
| (PFDS)                                                            |            |              |                |                   |                   |                   |                   |                   |
| EP231B: Perfluoroalkyl Carboxylic Acids                           | 075 00 1   | 0.001        | malka          | <0.001            | <0.001            | <0.001            | <0.001            | <0.001            |
| Perfluorobutanoic acid (PFBA)                                     | 375-22-4   |              | mg/kg          | <0.001            | < 0.001           | <0.001            | < 0.001           |                   |
| Perfluoropentanoic acid (PFPeA)<br>Perfluorohexanoic acid (PFHxA) | 2706-90-3  | 0.0002       | mg/kg          | <0.0002           | 0.0004            | 0.0002            | 0.0051            | 0.0064            |
| · · ·                                                             | 307-24-4   |              | mg/kg          | <0.0002           | 0.0010            | 0.0019            | 0.0233            | 0.0394            |
| Perfluoroheptanoic acid (PFHpA)<br>Perfluorooctanoic acid (PFOA)  | 375-85-9   | 0.0002       | mg/kg          | <0.0002           | 0.0013            | 0.0003            | 0.0009            | <0.0004           |
| Perfluorooctanoic acid (PFOA) Perfluorononanoic acid (PFNA)       | 335-67-1   | 0.0002       | mg/kg          | <0.0002           | 0.0067            | <0.0005           | <0.0009           | <0.0002           |
|                                                                   | 375-95-1   |              | mg/kg          | <0.0002           | <0.0004           | <0.0002           | <0.0002           | <0.0002           |
| Perfluorodecanoic acid (PFDA)                                     | 335-76-2   | 0.0002       | mg/kg          | <0.0002           | <0.0002           | <0.0002           | <0.0002           | <0.000Z           |

| Page       | : 21 of 26    |
|------------|---------------|
| Work Order | : EM1614608   |
| Client     | : GHD PTY LTD |
| Project    | 212558305     |



| Sub-Matrix: SOIL<br>(Matrix: SOIL)   |                             | Clie   | ent sample ID     | MW02_13.5         | MW03_0.1          | MW03_1.0          | FD02              | FD03          |
|--------------------------------------|-----------------------------|--------|-------------------|-------------------|-------------------|-------------------|-------------------|---------------|
|                                      | Client sampling date / time |        | 30-Nov-2016 00:00 |               |
| Compound                             | CAS Number                  | LOR    | Unit              | EM1614608-040     | EM1614608-041     | EM1614608-042     | EM1614608-043     | EM1614608-044 |
|                                      |                             |        | -                 | Result            | Result            | Result            | Result            | Result        |
| EP231B: Perfluoroalkyl Carboxylic Ad | cids - Continued            |        |                   |                   |                   |                   |                   |               |
| Perfluoroundecanoic acid             | 2058-94-8                   | 0.0002 | mg/kg             | <0.0002           | <0.0002           | <0.0002           | <0.0002           | <0.0002       |
| (PFUnDA)                             |                             |        |                   |                   |                   |                   |                   |               |
| Perfluorododecanoic acid             | 307-55-1                    | 0.0002 | mg/kg             | <0.0002           | 0.0003            | <0.0002           | <0.0002           | <0.0002       |
| (PFDoDA)                             |                             |        |                   |                   |                   |                   |                   |               |
| Perfluorotridecanoic acid            | 72629-94-8                  | 0.0002 | mg/kg             | <0.0002           | <0.0002           | <0.0002           | <0.0002           | <0.0002       |
| (PFTrDA)                             |                             |        |                   |                   |                   |                   |                   |               |
| Perfluorotetradecanoic acid          | 376-06-7                    | 0.0005 | mg/kg             | <0.0005           | <0.0005           | <0.0005           | <0.0005           | <0.0005       |
| (PFTeDA)                             |                             |        |                   |                   |                   |                   |                   |               |
| EP231C: Perfluoroalkyl Sulfonamides  |                             |        |                   |                   |                   |                   |                   |               |
| Perfluorooctane sulfonamide          | 754-91-6                    | 0.0002 | mg/kg             | <0.0002           | 0.0016            | <0.0002           | <0.0002           | <0.0002       |
| (FOSA)                               |                             |        |                   |                   |                   |                   |                   |               |
| N-Methyl perfluorooctane             | 31506-32-8                  | 0.0005 | mg/kg             | <0.0005           | <0.0005           | <0.0005           | <0.0005           | <0.0005       |
| sulfonamide (MeFOSA)                 |                             |        |                   |                   |                   |                   |                   |               |
| N-Ethyl perfluorooctane              | 4151-50-2                   | 0.0005 | mg/kg             | <0.0005           | <0.0005           | <0.0005           | <0.0005           | <0.0005       |
| sulfonamide (EtFOSA)                 |                             |        |                   |                   |                   |                   |                   |               |
| N-Methyl perfluorooctane             | 2448-09-7                   | 0.0005 | mg/kg             | <0.0005           | <0.0005           | <0.0005           | <0.0005           | <0.0005       |
| sulfonamidoethanol (MeFOSE)          |                             |        |                   |                   |                   |                   |                   |               |
| N-Ethyl perfluorooctane              | 1691-99-2                   | 0.0005 | mg/kg             | <0.0005           | <0.0005           | <0.0005           | <0.0005           | <0.0005       |
| sulfonamidoethanol (EtFOSE)          |                             |        |                   |                   |                   |                   |                   |               |
| N-Methyl perfluorooctane             | 2355-31-9                   | 0.0002 | mg/kg             | <0.0002           | 0.0038            | <0.0002           | <0.0002           | <0.0002       |
| sulfonamidoacetic acid               |                             |        |                   |                   |                   |                   |                   |               |
| (MeFOSAA)                            |                             |        |                   |                   |                   |                   |                   |               |
| N-Ethyl perfluorooctane              | 2991-50-6                   | 0.0002 | mg/kg             | <0.0002           | 0.0027            | <0.0002           | <0.0002           | <0.0002       |
| sulfonamidoacetic acid               |                             |        |                   |                   |                   |                   |                   |               |
| (EtFOSAA)                            |                             |        |                   |                   |                   |                   |                   |               |
| EP231D: (n:2) Fluorotelomer Sulfonic |                             |        | -                 |                   |                   |                   |                   |               |
| 4:2 Fluorotelomer sulfonic acid      | 757124-72-4                 | 0.0005 | mg/kg             | <0.0005           | <0.0005           | <0.0005           | <0.0005           | <0.0005       |
| (4:2 FTS)                            |                             | 0.0005 |                   | -0.0005           | -0.0005           | 10 0005           | 0.00/0            | 10 0005       |
| 6:2 Fluorotelomer sulfonic acid      | 27619-97-2                  | 0.0005 | mg/kg             | <0.0005           | <0.0005           | <0.0005           | 0.0018            | <0.0005       |
| (6:2 FTS)                            |                             | 0.0005 |                   | -0.0005           | -0.0005           | 10 0005           | -0.0005           | 10 0005       |
| 8:2 Fluorotelomer sulfonic acid      | 39108-34-4                  | 0.0005 | mg/kg             | <0.0005           | <0.0005           | <0.0005           | <0.0005           | <0.0005       |
| (8:2 FTS)                            |                             | 0.0005 |                   | -0.0005           | 10.0005           | -0.0005           | -0.0005           | 10 0005       |
| 10:2 Fluorotelomer sulfonic acid     | 120226-60-0                 | 0.0005 | mg/kg             | <0.0005           | <0.0005           | <0.0005           | <0.0005           | <0.0005       |
| (10:2 FTS)                           |                             |        |                   |                   |                   |                   |                   |               |
| EP231P: PFAS Sums                    |                             |        |                   |                   |                   |                   |                   |               |
| Sum of PFAS                          |                             | 0.0002 | mg/kg             | <0.0002           | 0.0347            | 0.0053            | 0.0741            | 0.0701        |

| Page       | : 22 of 26    |
|------------|---------------|
| Work Order | : EM1614608   |
| Client     | : GHD PTY LTD |
| Project    | 212558305     |



| Sub-Matrix: SOIL<br>(Matrix: SOIL) | Client sample ID  |               | MW02_13.5      | MW03_0.1          | MW03_1.0          | FD02              | FD03              |                   |
|------------------------------------|-------------------|---------------|----------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|                                    | Cl                | lient samplir | ng date / time | 30-Nov-2016 00:00 |
| Compound                           | CAS Number        | LOR           | Unit           | EM1614608-040     | EM1614608-041     | EM1614608-042     | EM1614608-043     | EM1614608-044     |
|                                    |                   |               |                | Result            | Result            | Result            | Result            | Result            |
| EP231P: PFAS Sums - Continued      |                   |               |                |                   |                   |                   |                   |                   |
| Sum of PFHxS and PFOS              | 355-46-4/1763-23- | 0.0002        | mg/kg          | <0.0002           | 0.0163            | 0.0016            | 0.0315            | 0.0011            |
| Sum of PFAS (WA DER List)          |                   | 0.0002        | mg/kg          | <0.0002           | 0.0257            | 0.0051            | 0.0697            | 0.0613            |
| EP231S: PFAS Surrogate             |                   |               |                |                   |                   |                   |                   |                   |
| 13C4-PFOS                          |                   | 0.0002        | %              | 119               | 93.0              | 97.0              | 122               | 83.0              |

| Page       | : 23 of 26    |
|------------|---------------|
| Work Order | : EM1614608   |
| Client     | : GHD PTY LTD |
| Project    | 212558305     |



| ub-Matrix: WATER<br>Matrix: WATER)       | Client sample ID |             | SW01           | SW02              | SW03              | FD01              |                   |  |
|------------------------------------------|------------------|-------------|----------------|-------------------|-------------------|-------------------|-------------------|--|
| ,                                        | Cl               | ient sampli | ng date / time | 29-Nov-2016 00:00 | 29-Nov-2016 00:00 | 29-Nov-2016 00:00 | 29-Nov-2016 00:00 |  |
| Compound                                 | CAS Number       | LOR         | Unit           | EM1614608-008     | EM1614608-009     | EM1614608-010     | EM1614608-011     |  |
|                                          |                  |             |                | Result            | Result            | Result            | Result            |  |
| EA005P: pH by PC Titrator                |                  |             |                |                   |                   |                   |                   |  |
| pH Value                                 |                  | 0.01        | pH Unit        | 7.29              | 6.87              | 7.01              | 7.05              |  |
| EA015: Total Dissolved Solids dried at 1 | 80 ± 5 °C        |             |                |                   |                   |                   |                   |  |
| Total Dissolved Solids @180°C            |                  | 10          | mg/L           | 250               | 158               | 176               | 162               |  |
| ED037P: Alkalinity by PC Titrator        |                  |             |                |                   |                   |                   |                   |  |
| Hydroxide Alkalinity as CaCO3            | DMO-210-001      | 1           | mg/L           | <1                | <1                | <1                |                   |  |
| Carbonate Alkalinity as CaCO3            | 3812-32-6        | 1           | mg/L           | <1                | <1                | <1                |                   |  |
| Bicarbonate Alkalinity as CaCO3          | 71-52-3          | 1           | mg/L           | 73                | 35                | 60                |                   |  |
| Total Alkalinity as CaCO3                |                  | 1           | mg/L           | 73                | 35                | 60                |                   |  |
| ED041G: Sulfate (Turbidimetric) as SO4   | 2- by DA         |             |                |                   |                   |                   |                   |  |
| Sulfate as SO4 - Turbidimetric           | 14808-79-8       | 1           | mg/L           | 16                | 6                 | 8                 |                   |  |
| ED045G: Chloride by Discrete Analyser    |                  |             |                |                   |                   |                   |                   |  |
| Chloride                                 | 16887-00-6       | 1           | mg/L           | 11                | 6                 | 10                |                   |  |
| ED093F: Dissolved Major Cations          |                  |             |                |                   |                   |                   |                   |  |
| Calcium                                  | 7440-70-2        | 1           | mg/L           | 6                 | 4                 | 4                 |                   |  |
| Magnesium                                | 7439-95-4        | 1           | mg/L           | 4                 | 2                 | 3                 |                   |  |
| Sodium                                   | 7440-23-5        | 1           | mg/L           | 24                | 6                 | 20                |                   |  |
| Potassium                                | 7440-09-7        | 1           | mg/L           | 4                 | 3                 | 5                 |                   |  |
| EN055: Ionic Balance                     |                  |             |                |                   |                   |                   |                   |  |
| Total Anions                             |                  | 0.01        | meq/L          | 2.10              | 0.99              | 1.65              |                   |  |
| Total Cations                            |                  | 0.01        | meq/L          | 1.77              | 0.70              | 1.44              |                   |  |
| EP231A: Perfluoroalkyl Sulfonic Acids    |                  |             |                |                   |                   |                   |                   |  |
| Perfluorobutane sulfonic acid            | 375-73-5         | 0.02        | µg/L           | 0.07              | <0.02             | 0.06              | 0.06              |  |
| (PFBS)                                   |                  |             |                |                   |                   |                   |                   |  |
| Perfluoropentane sulfonic acid           | 2706-91-4        | 0.02        | µg/L           | 0.06              | <0.02             | 0.07              | 0.08              |  |
| (PFPeS)                                  |                  |             |                |                   |                   |                   |                   |  |
| Perfluorohexane sulfonic acid            | 355-46-4         | 0.02        | µg/L           | 0.39              | <0.02             | 0.31              | 0.24              |  |
| (PFHxS)                                  |                  |             |                |                   |                   |                   |                   |  |
| Perfluoroheptane sulfonic acid           | 375-92-8         | 0.02        | µg/L           | 0.02              | <0.02             | <0.02             | <0.02             |  |
| (PFHpS)                                  | 4700.00.1        | 0.01        |                | 2.04              | 0.00              | 4.20              | 4.24              |  |
| Perfluorooctane sulfonic acid            | 1763-23-1        | 0.01        | µg/L           | 2.01              | 0.20              | 1.32              | 1.24              |  |
| (PFOS)                                   | 67906-42-7       | 0.02        | μg/L           | <0.02             | <0.02             | <0.02             | <0.02             |  |
| Perfluorodecane sulfonic acid<br>(PFDS)  | 07900-42-7       | 0.02        | µy/L           | NU.UZ             | <b>NU.U2</b>      | NU.02             | <b>NU.UZ</b>      |  |

| Page       | : 24 of 26    |
|------------|---------------|
| Work Order | : EM1614608   |
| Client     | : GHD PTY LTD |
| Project    | 212558305     |



| Sub-Matrix: WATER<br>(Matrix: WATER)                            |                  | Clie                        | ent sample ID | SW01          | SW02              | SW03              | FD01              |  |
|-----------------------------------------------------------------|------------------|-----------------------------|---------------|---------------|-------------------|-------------------|-------------------|--|
|                                                                 | Cl               | Client sampling date / time |               |               | 29-Nov-2016 00:00 | 29-Nov-2016 00:00 | 29-Nov-2016 00:00 |  |
| Compound                                                        | CAS Number       | LOR                         | Unit          | EM1614608-008 | EM1614608-009     | EM1614608-010     | EM1614608-011     |  |
|                                                                 |                  |                             |               | Result        | Result            | Result            | Result            |  |
| EP231B: Perfluoroalkyl Carboxylic Ac                            | cids - Continued |                             |               |               |                   |                   |                   |  |
| Perfluorobutanoic acid (PFBA)                                   | 375-22-4         | 0.1                         | µg/L          | <0.1          | <0.1              | <0.1              | <0.1              |  |
| Perfluoropentanoic acid (PFPeA)                                 | 2706-90-3        | 0.02                        | µg/L          | 0.21          | <0.02             | 0.20              | 0.20              |  |
| Perfluorohexanoic acid (PFHxA)                                  | 307-24-4         | 0.02                        | µg/L          | 0.19          | <0.02             | 0.40              | 0.39              |  |
| Perfluoroheptanoic acid (PFHpA)                                 | 375-85-9         | 0.02                        | µg/L          | 0.04          | <0.02             | 0.02              | 0.04              |  |
| Perfluorooctanoic acid (PFOA)                                   | 335-67-1         | 0.01                        | µg/L          | 0.06          | <0.01             | 0.05              | <0.01             |  |
| Perfluorononanoic acid (PFNA)                                   | 375-95-1         | 0.02                        | µg/L          | <0.02         | <0.02             | <0.02             | <0.02             |  |
| Perfluorodecanoic acid (PFDA)                                   | 335-76-2         | 0.02                        | µg/L          | <0.02         | <0.02             | <0.02             | <0.02             |  |
| Perfluoroundecanoic acid<br>(PFUnDA)                            | 2058-94-8        | 0.02                        | µg/L          | <0.02         | <0.02             | <0.02             | <0.02             |  |
| Perfluorododecanoic acid<br>(PFDoDA)                            | 307-55-1         | 0.02                        | µg/L          | <0.02         | <0.02             | <0.02             | <0.02             |  |
| Perfluorotridecanoic acid<br>(PFTrDA)                           | 72629-94-8       | 0.02                        | µg/L          | <0.02         | <0.02             | <0.02             | <0.02             |  |
| Perfluorotetradecanoic acid<br>(PFTeDA)                         | 376-06-7         | 0.05                        | µg/L          | <0.05         | <0.05             | <0.05             | <0.05             |  |
| EP231C: Perfluoroalkyl Sulfonamides                             |                  |                             |               |               |                   |                   |                   |  |
| Perfluorooctane sulfonamide<br>(FOSA)                           | 754-91-6         | 0.02                        | µg/L          | <0.02         | <0.02             | <0.02             | <0.02             |  |
| N-Methyl perfluorooctane<br>sulfonamide (MeFOSA)                | 31506-32-8       | 0.05                        | µg/L          | <0.05         | <0.05             | <0.05             | <0.05             |  |
| N-Ethyl perfluorooctane<br>sulfonamide (EtFOSA)                 | 4151-50-2        | 0.05                        | µg/L          | <0.05         | <0.05             | <0.05             | <0.05             |  |
| N-Methyl perfluorooctane<br>sulfonamidoethanol (MeFOSE)         | 2448-09-7        | 0.05                        | µg/L          | <0.05         | <0.05             | <0.05             | <0.05             |  |
| N-Ethyl perfluorooctane<br>sulfonamidoethanol (EtFOSE)          | 1691-99-2        | 0.05                        | µg/L          | <0.05         | <0.05             | <0.05             | <0.05             |  |
| N-Methyl perfluorooctane<br>sulfonamidoacetic acid<br>(MeFOSAA) | 2355-31-9        | 0.02                        | µg/L          | <0.02         | <0.02             | <0.02             | <0.02             |  |
| N-Ethyl perfluorooctane<br>sulfonamidoacetic acid<br>(EtFOSAA)  | 2991-50-6        | 0.02                        | µg/L          | <0.02         | <0.02             | <0.02             | <0.02             |  |
| EP231D: (n:2) Fluorotelomer Sulfonic                            | Acids            |                             |               |               |                   |                   |                   |  |
| 4:2 Fluorotelomer sulfonic acid<br>(4:2 FTS)                    | 757124-72-4      | 0.05                        | µg/L          | <0.05         | <0.05             | <0.05             | <0.05             |  |

| Page       | : 25 of 26    |
|------------|---------------|
| Work Order | : EM1614608   |
| Client     | : GHD PTY LTD |
| Project    | 212558305     |



| Sub-Matrix: WATER<br>(Matrix: WATER)           |                        | Client sample ID |                | SW01              | SW02              | SW03              | FD01              |  |
|------------------------------------------------|------------------------|------------------|----------------|-------------------|-------------------|-------------------|-------------------|--|
|                                                | Cl                     | ient sampli      | ng date / time | 29-Nov-2016 00:00 | 29-Nov-2016 00:00 | 29-Nov-2016 00:00 | 29-Nov-2016 00:00 |  |
| Compound                                       | CAS Number             | LOR              | Unit           | EM1614608-008     | EM1614608-009     | EM1614608-010     | EM1614608-011     |  |
|                                                |                        |                  |                | Result            | Result            | Result            | Result            |  |
| EP231D: (n:2) Fluorotelomer Sulfor             | nic Acids - Continued  |                  |                |                   |                   |                   |                   |  |
| 6:2 Fluorotelomer sulfonic acid<br>(6:2 FTS)   | 27619-97-2             | 0.05             | µg/L           | 0.13              | <0.05             | 0.09              | <0.05             |  |
| 8:2 Fluorotelomer sulfonic acid<br>(8:2 FTS)   | 39108-34-4             | 0.05             | µg/L           | <0.05             | <0.05             | <0.05             | <0.05             |  |
| 10:2 Fluorotelomer sulfonic acid<br>(10:2 FTS) | 120226-60-0            | 0.05             | µg/L           | <0.05             | <0.05             | <0.05             | <0.05             |  |
| EP231P: PFAS Sums                              |                        |                  |                |                   |                   |                   |                   |  |
| Sum of PFAS                                    |                        | 0.01             | µg/L           | 3.18              | 0.20              | 2.52              | 2.25              |  |
| Sum of PFHxS and PFOS                          | 355-46-4/1763-23-<br>1 | 0.01             | µg/L           | 2.40              | 0.20              | 1.63              | 1.48              |  |
| Sum of PFAS (WA DER List)                      |                        | 0.01             | µg/L           | 3.10              | 0.20              | 2.45              | 2.17              |  |
| EP231S: PFAS Surrogate                         |                        |                  |                |                   |                   |                   |                   |  |
| 13C4-PFOS                                      |                        | 0.02             | %              | 85.0              | 83.0              | 107               | 119               |  |

| Page       | : 26 of 26    |
|------------|---------------|
| Work Order | : EM1614608   |
| Client     | : GHD PTY LTD |
| Project    | 212558305     |



### Surrogate Control Limits

| Sub-Matrix: SOIL       |            | Recovery Limits (%) |            |  |  |
|------------------------|------------|---------------------|------------|--|--|
| Compound               | CAS Number | Low                 | High       |  |  |
| EP231S: PFAS Surrogate |            |                     |            |  |  |
| 13C4-PFOS              |            | 70                  | 130        |  |  |
| Sub-Matrix: WATER      |            | Recovery            | Limits (%) |  |  |
| Compound               | CAS Number | Low                 | High       |  |  |
| EP231S: PFAS Surrogate |            |                     |            |  |  |
| 13C4-PFOS              |            | 60                  | 130        |  |  |



|                        | QA/QC Complian    | ce Assessment to assist with | h Quality Review                   |  |  |  |
|------------------------|-------------------|------------------------------|------------------------------------|--|--|--|
| Work Order : EM1614608 |                   | Page                         | : 1 of 14                          |  |  |  |
| Client                 | : GHD PTY LTD     | Laboratory                   | : Environmental Division Melbourne |  |  |  |
| Contact                | : MR BEN ANDERSON | Telephone                    | : +61-3-8549 9630                  |  |  |  |
| Project                | : 212558305       | Date Samples Received        | : 02-Dec-2016                      |  |  |  |
| Site                   | DENILIQUIN        | Issue Date                   | : 12-Dec-2016                      |  |  |  |
| Sampler                | : SP              | No. of samples received      | : 44                               |  |  |  |
| Order number           | :                 | No. of samples analysed      | : 29                               |  |  |  |

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

### **Summary of Outliers**

### **Outliers : Quality Control Samples**

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- <u>NO</u> Duplicate outliers occur.
- <u>NO</u> Laboratory Control outliers occur.
- Matrix Spike outliers exist please see following pages for full details.
- For all regular sample matrices, NO surrogate recovery outliers occur.

### **Outliers : Analysis Holding Time Compliance**

• Analysis Holding Time Outliers exist - please see following pages for full details.

### **Outliers : Frequency of Quality Control Samples**

• Quality Control Sample Frequency Outliers exist - please see following pages for full details.

| Page       | : 2 of 14     |
|------------|---------------|
| Work Order | : EM1614608   |
| Client     | : GHD PTY LTD |
| Project    | 212558305     |



### **Outliers : Quality Control Samples**

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

### Matrix: SOIL

| Compound Group Name                        | Laboratory Sample ID | Client Sample ID | Analyte                                         | CAS Number | Data              | Limits | Comment                                                                                     |
|--------------------------------------------|----------------------|------------------|-------------------------------------------------|------------|-------------------|--------|---------------------------------------------------------------------------------------------|
| Matrix Spike (MS) Recoveries               |                      |                  |                                                 |            |                   |        |                                                                                             |
| EP231A: Perfluoroalkyl Sulfonic Acids      | EM1614608001         | SS01             | Perfluorooctane<br>sulfonic acid (PFOS)         | 1763-23-1  | Not<br>Determined |        | MS recovery not determined,<br>background level greater than or<br>equal to 4x spike level. |
| EP231D: (n:2) Fluorotelomer Sulfonic Acids | EM1614608001         | SS01             | 6:2 Fluorotelomer<br>sulfonic acid (6:2<br>FTS) | 27619-97-2 | Not<br>Determined |        | MS recovery not determined,<br>background level greater than or<br>equal to 4x spike level. |

### Matrix: WATER

| Compound Group Name                   | Laboratory Sample ID | Client Sample ID | Analyte              | CAS Number | Data       | Lir | mits | Comment                          |
|---------------------------------------|----------------------|------------------|----------------------|------------|------------|-----|------|----------------------------------|
| Matrix Spike (MS) Recoveries          |                      |                  |                      |            |            |     |      |                                  |
| EP231A: Perfluoroalkyl Sulfonic Acids | EM1614608008         | SW01             | Perfluorooctane      | 1763-23-1  | Not        |     |      | MS recovery not determined,      |
|                                       |                      |                  | sulfonic acid (PFOS) |            | Determined |     |      | background level greater than or |
|                                       |                      |                  |                      |            |            |     |      | equal to 4x spike level.         |

### **Outliers : Analysis Holding Time Compliance**

Matrix: WATER

| Method                          | Extraction / Preparation        |                |                    |         |               |                  |         |
|---------------------------------|---------------------------------|----------------|--------------------|---------|---------------|------------------|---------|
| Container / Client Sample ID(s) |                                 | Date extracted | Due for extraction | Days    | Date analysed | Due for analysis | Days    |
|                                 |                                 |                |                    | overdue |               |                  | overdue |
| EA005P: pH by PC Titrator       |                                 |                |                    |         |               |                  |         |
| Clear Plastic Bottle - Natural  |                                 |                |                    |         |               |                  |         |
| SW01,                           | SW02,                           |                |                    |         | 06-Dec-2016   | 29-Nov-2016      | 7       |
| SW03,                           | FD01                            |                |                    |         |               |                  |         |
| ED093F: Dissolved Major Cations | ED093F: Dissolved Major Cations |                |                    |         |               |                  |         |
| Clear Plastic Bottle - Natural  |                                 |                |                    |         |               |                  |         |
| SW01,                           | SW02,                           |                |                    |         | 07-Dec-2016   | 06-Dec-2016      | 1       |
| SW03                            |                                 |                |                    |         |               |                  |         |

### **Outliers : Frequency of Quality Control Samples**

Matrix: SOIL

| Quality Control Sample Type | Co | unt     | Rate (%) |          | Rate (%)                       |  | Quality Control Specification |
|-----------------------------|----|---------|----------|----------|--------------------------------|--|-------------------------------|
| Method                      | QC | Regular | Actual   | Expected |                                |  |                               |
| Matrix Spikes (MS)          |    |         |          |          |                                |  |                               |
| Total Metals by ICP-AES     | 0  | 25      | 0.00     | 5.00     | NEPM 2013 B3 & ALS QC Standard |  |                               |

| Page       | : 3 of 14     |
|------------|---------------|
| Work Order | : EM1614608   |
| Client     | : GHD PTY LTD |
| Project    | 212558305     |



### Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

| Matrix: SOIL                    |            |             |                          |                    | Evaluation | n: × = Holding time | breach ; ✓ = With | n holding tim         |
|---------------------------------|------------|-------------|--------------------------|--------------------|------------|---------------------|-------------------|-----------------------|
| Method                          |            | Sample Date | Extraction / Preparation |                    |            |                     |                   |                       |
| Container / Client Sample ID(s) |            |             | Date extracted           | Due for extraction | Evaluation | Date analysed       | Due for analysis  | Evaluation            |
| EA055: Moisture Content         |            |             |                          |                    |            |                     |                   |                       |
| Snap Lock Bag (EA055-103)       |            |             |                          |                    |            |                     |                   |                       |
| SS01,                           | SS02,      | 29-Nov-2016 |                          |                    |            | 07-Dec-2016         | 13-Dec-2016       | <ul> <li>✓</li> </ul> |
| SS03,                           | SS04,      |             |                          |                    |            |                     |                   |                       |
| SS05,                           | SS06,      |             |                          |                    |            |                     |                   |                       |
| SS07,                           | SB02_0.1,  |             |                          |                    |            |                     |                   |                       |
| SB02_1.0,                       | SB03_0.1,  |             |                          |                    |            |                     |                   |                       |
| SB03_1.0,                       | SB05_0.1,  |             |                          |                    |            |                     |                   |                       |
| SB05_1.0                        |            |             |                          |                    |            |                     |                   |                       |
| Snap Lock Bag (EA055-103)       |            |             |                          |                    |            |                     |                   |                       |
| SB01_0.1,                       | SB01_1.0,  | 30-Nov-2016 |                          |                    |            | 07-Dec-2016         | 14-Dec-2016       | ✓                     |
| SB04_0.15,                      | SB04_2.0,  |             |                          |                    |            |                     |                   |                       |
| MW01_0.1,                       | MW01_9.0,  |             |                          |                    |            |                     |                   |                       |
| MW02_0.1,                       | MW02_13.5, |             |                          |                    |            |                     |                   |                       |
| MW03_0.1,                       | MW03_1.0,  |             |                          |                    |            |                     |                   |                       |
| FD02,                           | FD03       |             |                          |                    |            |                     |                   |                       |
| EA150: Particle Sizing          |            |             |                          |                    |            |                     |                   |                       |
| Snap Lock Bag (EA150H)          |            |             |                          |                    |            |                     |                   |                       |
| SS01,                           | SS02,      | 29-Nov-2016 |                          |                    |            | 08-Dec-2016         | 28-May-2017       | ✓                     |
| SS03,                           | SS04,      |             |                          |                    |            |                     |                   |                       |
| SS05,                           | SS06,      |             |                          |                    |            |                     |                   |                       |
| SS07,                           | SB02_0.1,  |             |                          |                    |            |                     |                   |                       |
| SB02_1.0,                       | SB03_0.1,  |             |                          |                    |            |                     |                   |                       |
| SB03_1.0,                       | SB05_0.1,  |             |                          |                    |            |                     |                   |                       |
| SB05_1.0                        |            |             |                          |                    |            |                     |                   |                       |
| Snap Lock Bag (EA150H)          |            |             |                          |                    |            |                     |                   |                       |
| SB01_0.1,                       | SB01_1.0,  | 30-Nov-2016 |                          |                    |            | 08-Dec-2016         | 29-May-2017       | ✓                     |
| SB04_0.15,                      | SB04_2.0,  |             |                          |                    |            |                     |                   |                       |
| MW01_0.1,                       | MW01_9.0,  |             |                          |                    |            |                     |                   |                       |
| MW02_0.1,                       | MW02_13.5, |             |                          |                    |            |                     |                   |                       |
| MW03_0.1,                       | MW03_1.0   |             |                          |                    |            |                     |                   |                       |

| Page       | : 4 of 14     |
|------------|---------------|
| Work Order | : EM1614608   |
| Client     | : GHD PTY LTD |
| Project    | 212558305     |



| Matrix: SOIL                                 |                        |             |                          |                    | Evaluatior | n: × = Holding time | breach ; ✓ = Withi | n holding time |
|----------------------------------------------|------------------------|-------------|--------------------------|--------------------|------------|---------------------|--------------------|----------------|
| Method                                       |                        | Sample Date | Extraction / Preparation |                    |            | Analysis            |                    |                |
| Container / Client Sample ID(s)              |                        |             | Date extracted           | Due for extraction | Evaluation | Date analysed       | Due for analysis   | Evaluation     |
| EA150: Soil Classification based on Particle | e Size                 |             |                          |                    |            |                     |                    |                |
| Snap Lock Bag (EA150H)                       |                        |             |                          |                    |            |                     |                    |                |
| SS01,                                        | SS02,                  | 29-Nov-2016 |                          |                    |            | 08-Dec-2016         | 28-May-2017        | ✓              |
| SS03,                                        | SS04,                  |             |                          |                    |            |                     |                    |                |
| SS05,                                        | SS06,                  |             |                          |                    |            |                     |                    |                |
| SS07,                                        | SB02_0.1,              |             |                          |                    |            |                     |                    |                |
| SB02_1.0,                                    | SB03_0.1,              |             |                          |                    |            |                     |                    |                |
| SB03_1.0,                                    | SB05_0.1,              |             |                          |                    |            |                     |                    |                |
| SB05_1.0                                     | 0000_0.1,              |             |                          |                    |            |                     |                    |                |
| Snap Lock Bag (EA150H)                       |                        |             |                          |                    |            |                     |                    |                |
| SB01_0.1,                                    | SB01_1.0,              | 30-Nov-2016 |                          |                    |            | 08-Dec-2016         | 29-May-2017        | ✓              |
| SB04_0.15,                                   | SB04_2.0,              |             |                          |                    |            |                     | 20 May 2017        | v              |
|                                              |                        |             |                          |                    |            |                     |                    |                |
| MW01_0.1,                                    | MW01_9.0,              |             |                          |                    |            |                     |                    |                |
| MW02_0.1,                                    | MW02_13.5,             |             |                          |                    |            |                     |                    |                |
| MW03_0.1,                                    | MW03_1.0               |             |                          |                    |            |                     |                    |                |
| EA152: Soil Particle Density                 |                        |             |                          |                    |            |                     |                    |                |
| Snap Lock Bag (EA152)                        |                        |             |                          |                    |            |                     |                    |                |
| SS01,                                        | SS02,                  | 29-Nov-2016 |                          |                    |            | 08-Dec-2016         | 28-May-2017        | ✓              |
| SS03,                                        | SS04,                  |             |                          |                    |            |                     |                    |                |
| SS05,                                        | SS06,                  |             |                          |                    |            |                     |                    |                |
| SS07,                                        | SB02_0.1,              |             |                          |                    |            |                     |                    |                |
| SB02_1.0,                                    | SB03_0.1,              |             |                          |                    |            |                     |                    |                |
| SB03_1.0,                                    | SB05_0.1,              |             |                          |                    |            |                     |                    |                |
| SB05_1.0                                     | _                      |             |                          |                    |            |                     |                    |                |
| <br>Snap Lock Bag (EA152)                    |                        |             |                          |                    |            |                     |                    |                |
| SB01_0.1,                                    | SB01_1.0,              | 30-Nov-2016 |                          |                    |            | 08-Dec-2016         | 29-May-2017        | ✓              |
| SB04_0.15,                                   | SB04_2.0,              |             |                          |                    |            |                     |                    |                |
| MW01_0.1,                                    | MW01_9.0,              |             |                          |                    |            |                     |                    |                |
| MW02_0.1,                                    | MW02_13.5,             |             |                          |                    |            |                     |                    |                |
| MW03_0.1,                                    | MW03_1.0               |             |                          |                    |            |                     |                    |                |
| ED006: Exchangeable Cations on Alkaline      | _                      |             |                          |                    |            |                     |                    | <u> </u>       |
| Soil Glass Jar - Unpreserved (ED006)         | 5015                   |             |                          |                    |            |                     |                    |                |
| SS01,                                        | SS02,                  | 29-Nov-2016 | 09-Dec-2016              | 27-Dec-2016        | 1          | 09-Dec-2016         | 27-Dec-2016        | 1              |
| SS07,                                        | SB02_0.1,              |             |                          |                    | _          |                     |                    |                |
| SB02_1.0,                                    | SB03_0.1,              |             |                          |                    |            |                     |                    |                |
| SB03_1.0                                     | 3003_0.1,              |             |                          |                    |            |                     |                    |                |
| Soil Glass Jar - Unpreserved (ED006)         |                        |             |                          |                    |            |                     |                    |                |
| SB01_0.1,                                    | SB01_1.0,              | 30-Nov-2016 | 09-Dec-2016              | 28-Dec-2016        | 1          | 09-Dec-2016         | 28-Dec-2016        | 1              |
| SB01_0.15,                                   | SB01_1.0,<br>SB04_2.0, |             |                          |                    |            |                     |                    | <b>▼</b>       |
| MW01_0.1,                                    | MW01_9.0,              |             |                          |                    |            |                     |                    |                |
|                                              |                        |             |                          |                    |            |                     |                    |                |
| MW02_0.1,                                    | MW02_13.5,             |             |                          |                    |            |                     |                    |                |
| MW03_1.0                                     |                        |             |                          |                    |            |                     |                    |                |

| Page       | : 5 of 14     |
|------------|---------------|
| Work Order | EM1614608     |
| Client     | : GHD PTY LTD |
| Project    | 212558305     |



| Matrix: SOIL                       |            |             |                |                        | Evaluation | : × = Holding time | breach ; ✓ = Withi | in holding time       |
|------------------------------------|------------|-------------|----------------|------------------------|------------|--------------------|--------------------|-----------------------|
| Method                             |            | Sample Date | Ex             | traction / Preparation |            |                    | Analysis           |                       |
| Container / Client Sample ID(s)    |            |             | Date extracted | Due for extraction     | Evaluation | Date analysed      | Due for analysis   | Evaluation            |
| ED007: Exchangeable Cations        |            |             |                |                        |            |                    |                    |                       |
| Snap Lock Bag (ED007)              |            |             |                |                        |            |                    |                    |                       |
| SS03,                              | SS04,      | 29-Nov-2016 | 06-Dec-2016    | 27-Dec-2016            | 1          | 09-Dec-2016        | 27-Dec-2016        | <ul> <li>✓</li> </ul> |
| SS05,                              | SS06       |             |                |                        |            |                    |                    |                       |
| Snap Lock Bag (ED007)              |            |             |                | 00 D 0010              |            |                    | 00 D - 0010        |                       |
| MW03_0.1                           |            | 30-Nov-2016 | 06-Dec-2016    | 28-Dec-2016            | ✓          | 09-Dec-2016        | 28-Dec-2016        | ✓                     |
| ED008: Exchangeable Cations        |            |             |                |                        |            |                    |                    |                       |
| Snap Lock Bag (ED008)              |            |             |                |                        |            |                    |                    |                       |
| SB05_0.1,                          | SB05_1.0   | 29-Nov-2016 | 06-Dec-2016    | 27-Dec-2016            | ✓          | 09-Dec-2016        | 27-Dec-2016        | ✓                     |
| ED040S : Soluble Sulfate by ICPAES |            |             |                |                        |            |                    |                    |                       |
| Snap Lock Bag (ED040S)             | 2222       | 29-Nov-2016 | 07-Dec-2016    | 27 Dec 2016            |            | 08-Dec-2016        | 04 lon 2017        |                       |
| SS01,                              | SS02,      | 29-NOV-2016 | 07-Dec-2016    | 27-Dec-2016            | 1          | 06-Dec-2016        | 04-Jan-2017        | ✓                     |
| SS03,                              | SS04,      |             |                |                        |            |                    |                    |                       |
| SS05,                              | SS06,      |             |                |                        |            |                    |                    |                       |
| SS07,                              | SB02_0.1,  |             |                |                        |            |                    |                    |                       |
| SB02_1.0,                          | SB03_0.1,  |             |                |                        |            |                    |                    |                       |
| SB03_1.0,                          | SB05_0.1,  |             |                |                        |            |                    |                    |                       |
| SB05_1.0                           |            |             |                |                        |            |                    |                    |                       |
| Snap Lock Bag (ED040S)             |            |             |                |                        |            |                    |                    |                       |
| SB01_0.1,                          | SB01_1.0,  | 30-Nov-2016 | 07-Dec-2016    | 28-Dec-2016            | 1          | 08-Dec-2016        | 04-Jan-2017        | <ul> <li>✓</li> </ul> |
| SB04_0.15,                         | SB04_2.0,  |             |                |                        |            |                    |                    |                       |
| MW01_0.1,                          | MW01_9.0,  |             |                |                        |            |                    |                    |                       |
| MW02_0.1,                          | MW02_13.5, |             |                |                        |            |                    |                    |                       |
| MW03_0.1,                          | MW03_1.0,  |             |                |                        |            |                    |                    |                       |
| FD02,                              | FD03       |             |                |                        |            |                    |                    |                       |
| ED093S: Soluble Major Cations      |            |             |                |                        |            |                    |                    |                       |
| Snap Lock Bag (ED093S)             |            |             |                |                        |            |                    |                    |                       |
| SS01,                              | SS02,      | 29-Nov-2016 | 07-Dec-2016    | 28-May-2017            | 1          | 08-Dec-2016        | 28-May-2017        | ✓                     |
| SS03,                              | SS04,      |             |                |                        |            |                    |                    |                       |
| SS05,                              | SS06,      |             |                |                        |            |                    |                    |                       |
| SS07,                              | SB02_0.1,  |             |                |                        |            |                    |                    |                       |
| SB02_1.0,                          | SB03_0.1,  |             |                |                        |            |                    |                    |                       |
| SB03_1.0,                          | SB05_0.1,  |             |                |                        |            |                    |                    |                       |
| SB05_1.0                           |            |             |                |                        |            |                    |                    |                       |
| Snap Lock Bag (ED093S)             |            |             |                |                        |            |                    |                    |                       |
| SB01_0.1,                          | SB01_1.0,  | 30-Nov-2016 | 07-Dec-2016    | 29-May-2017            | 1          | 08-Dec-2016        | 29-May-2017        | ✓                     |
| SB04_0.15,                         | SB04_2.0,  |             |                |                        |            |                    |                    |                       |
| MW01_0.1,                          | MW01_9.0,  |             |                |                        |            |                    |                    |                       |
| MW02_0.1,                          | MW02_13.5, |             |                |                        |            |                    |                    |                       |
| MW03_0.1,                          | MW03_1.0,  |             |                |                        |            |                    |                    |                       |
| FD02,                              | FD03       |             |                |                        |            |                    |                    |                       |

| Page       | : 6 of 14     |
|------------|---------------|
| Work Order | : EM1614608   |
| Client     | : GHD PTY LTD |
| Project    | 212558305     |



| Matrix: SOIL                              |            |             |                |                        | Evaluation | : × = Holding time | breach ; ✓ = Withi | n holding time. |
|-------------------------------------------|------------|-------------|----------------|------------------------|------------|--------------------|--------------------|-----------------|
| Method                                    |            | Sample Date | Ex             | traction / Preparation |            |                    | Analysis           |                 |
| Container / Client Sample ID(s)           |            |             | Date extracted | Due for extraction     | Evaluation | Date analysed      | Due for analysis   | Evaluation      |
| EG005T: Total Metals by ICP-AES           |            |             |                |                        |            |                    |                    |                 |
| Snap Lock Bag (EG005T)                    |            |             |                |                        |            |                    |                    |                 |
| SS01,                                     | SS02,      | 29-Nov-2016 | 07-Dec-2016    | 28-May-2017            | 1          | 08-Dec-2016        | 28-May-2017        | ✓               |
| SS03,                                     | SS04,      |             |                |                        |            |                    |                    |                 |
| SS05,                                     | SS06,      |             |                |                        |            |                    |                    |                 |
| SS07,                                     | SB02_0.1,  |             |                |                        |            |                    |                    |                 |
| SB02_1.0,                                 | SB03_0.1,  |             |                |                        |            |                    |                    |                 |
| SB03_1.0,                                 | SB05_0.1,  |             |                |                        |            |                    |                    |                 |
| SB05_1.0                                  |            |             |                |                        |            |                    |                    |                 |
| Snap Lock Bag (EG005T)                    |            |             |                |                        |            |                    |                    |                 |
| SB01_0.1,                                 | SB01_1.0,  | 30-Nov-2016 | 07-Dec-2016    | 29-May-2017            | 1          | 08-Dec-2016        | 29-May-2017        | ✓               |
| SB04_0.15,                                | SB04_2.0,  |             |                |                        |            |                    |                    |                 |
| MW01_0.1,                                 | MW01_9.0,  |             |                |                        |            |                    |                    |                 |
| MW02_0.1,                                 | MW02_13.5, |             |                |                        |            |                    |                    |                 |
| MW03_0.1,                                 | MW03_1.0,  |             |                |                        |            |                    |                    |                 |
| FD02,                                     | FD03       |             |                |                        |            |                    |                    |                 |
| EP003: Total Organic Carbon (TOC) in Soil |            |             |                |                        |            |                    |                    |                 |
| Pulp Bag (EP003)                          |            |             |                |                        |            |                    |                    |                 |
| SS01,                                     | SS02,      | 29-Nov-2016 | 08-Dec-2016    | 27-Dec-2016            | ~          | 08-Dec-2016        | 27-Dec-2016        | ✓               |
| SS03,                                     | SS04,      |             |                |                        |            |                    |                    |                 |
| SS05,                                     | SS06,      |             |                |                        |            |                    |                    |                 |
| SS07,                                     | SB02_0.1,  |             |                |                        |            |                    |                    |                 |
| SB02_1.0,                                 | SB03_0.1,  |             |                |                        |            |                    |                    |                 |
| SB03_1.0,                                 | SB05_0.1,  |             |                |                        |            |                    |                    |                 |
| SB05_1.0                                  |            |             |                |                        |            |                    |                    |                 |
| Pulp Bag (EP003)                          |            |             |                |                        |            |                    |                    |                 |
| SB01_0.1,                                 | SB01_1.0,  | 30-Nov-2016 | 08-Dec-2016    | 28-Dec-2016            | ~          | 08-Dec-2016        | 28-Dec-2016        | ✓               |
| SB04_0.15,                                | SB04_2.0,  |             |                |                        |            |                    |                    |                 |
| MW01_0.1,                                 | MW01_9.0,  |             |                |                        |            |                    |                    |                 |
| MW02_0.1,                                 | MW02_13.5, |             |                |                        |            |                    |                    |                 |
| MW03_0.1,                                 | MW03_1.0,  |             |                |                        |            |                    |                    |                 |
| FD02,                                     | FD03       |             |                |                        |            |                    |                    |                 |

| Page       | : 7 of 14     |
|------------|---------------|
| Work Order | : EM1614608   |
| Client     | : GHD PTY LTD |
| Project    | 212558305     |



| Matrix: SOIL                            |            |             |                |                        | Evaluation | : × = Holding time | breach ; ✓ = Withi | n holding time. |
|-----------------------------------------|------------|-------------|----------------|------------------------|------------|--------------------|--------------------|-----------------|
| Method                                  |            | Sample Date | Ex             | traction / Preparation |            |                    | Analysis           |                 |
| Container / Client Sample ID(s)         |            |             | Date extracted | Due for extraction     | Evaluation | Date analysed      | Due for analysis   | Evaluation      |
| EP231A: Perfluoroalkyl Sulfonic Acids   |            |             |                |                        |            |                    |                    |                 |
| HDPE Soil Jar (EP231X)                  |            |             |                |                        |            |                    |                    |                 |
| SS01,                                   | SS02,      | 29-Nov-2016 | 08-Dec-2016    | 28-May-2017            | 1          | 08-Dec-2016        | 17-Jan-2017        | ✓               |
| SS03,                                   | SS04,      |             |                |                        |            |                    |                    |                 |
| SS05,                                   | SS06,      |             |                |                        |            |                    |                    |                 |
| SS07,                                   | SB02_0.1,  |             |                |                        |            |                    |                    |                 |
| SB02_1.0,                               | SB03_0.1,  |             |                |                        |            |                    |                    |                 |
| SB03_1.0,                               | SB05_0.1,  |             |                |                        |            |                    |                    |                 |
| SB05_1.0                                |            |             |                |                        |            |                    |                    |                 |
| HDPE Soil Jar (EP231X)                  |            |             |                |                        |            |                    |                    |                 |
| SB01_0.1,                               | SB01_1.0,  | 30-Nov-2016 | 08-Dec-2016    | 29-May-2017            | 1          | 08-Dec-2016        | 17-Jan-2017        | ✓               |
| SB04_0.15,                              | SB04_2.0,  |             |                |                        |            |                    |                    |                 |
| MW01_0.1,                               | MW01_9.0,  |             |                |                        |            |                    |                    |                 |
| MW02_0.1,                               | MW02_13.5, |             |                |                        |            |                    |                    |                 |
| MW03_0.1,                               | MW03_1.0,  |             |                |                        |            |                    |                    |                 |
| FD02,                                   | FD03       |             |                |                        |            |                    |                    |                 |
| EP231B: Perfluoroalkyl Carboxylic Acids |            |             |                |                        |            |                    |                    |                 |
| HDPE Soil Jar (EP231X)                  |            |             |                |                        |            |                    |                    |                 |
| SS01,                                   | SS02,      | 29-Nov-2016 | 08-Dec-2016    | 28-May-2017            | 1          | 08-Dec-2016        | 17-Jan-2017        | ✓               |
| SS03,                                   | SS04,      |             |                |                        |            |                    |                    |                 |
| SS05,                                   | SS06,      |             |                |                        |            |                    |                    |                 |
| SS07,                                   | SB02_0.1,  |             |                |                        |            |                    |                    |                 |
| SB02_1.0,                               | SB03_0.1,  |             |                |                        |            |                    |                    |                 |
| SB03_1.0,                               | SB05_0.1,  |             |                |                        |            |                    |                    |                 |
| SB05_1.0                                |            |             |                |                        |            |                    |                    |                 |
| HDPE Soil Jar (EP231X)                  |            |             |                |                        |            |                    |                    |                 |
| SB01_0.1,                               | SB01_1.0,  | 30-Nov-2016 | 08-Dec-2016    | 29-May-2017            | 1          | 08-Dec-2016        | 17-Jan-2017        | ✓               |
| SB04_0.15,                              | SB04_2.0,  |             |                |                        |            |                    |                    |                 |
| MW01_0.1,                               | MW01_9.0,  |             |                |                        |            |                    |                    |                 |
| MW02_0.1,                               | MW02_13.5, |             |                |                        |            |                    |                    |                 |
| MW03_0.1,                               | MW03_1.0,  |             |                |                        |            |                    |                    |                 |
| FD02,                                   | FD03       |             |                |                        |            |                    |                    |                 |

| Page       | : 8 of 14     |
|------------|---------------|
| Work Order | : EM1614608   |
| Client     | : GHD PTY LTD |
| Project    | 212558305     |



| Matrix: SOIL                               |            |             |                |                        | Evaluation | : × = Holding time | breach ; ✓ = Withi | n holding time. |
|--------------------------------------------|------------|-------------|----------------|------------------------|------------|--------------------|--------------------|-----------------|
| Method                                     |            | Sample Date | Ex             | traction / Preparation |            |                    | Analysis           |                 |
| Container / Client Sample ID(s)            |            |             | Date extracted | Due for extraction     | Evaluation | Date analysed      | Due for analysis   | Evaluation      |
| EP231C: Perfluoroalkyl Sulfonamides        |            |             |                |                        |            |                    |                    |                 |
| HDPE Soil Jar (EP231X)                     |            |             |                |                        |            |                    |                    |                 |
| SS01,                                      | SS02,      | 29-Nov-2016 | 08-Dec-2016    | 28-May-2017            | 1          | 08-Dec-2016        | 17-Jan-2017        | ✓               |
| SS03,                                      | SS04,      |             |                |                        |            |                    |                    |                 |
| SS05,                                      | SS06,      |             |                |                        |            |                    |                    |                 |
| SS07,                                      | SB02_0.1,  |             |                |                        |            |                    |                    |                 |
| SB02_1.0,                                  | SB03_0.1,  |             |                |                        |            |                    |                    |                 |
| SB03_1.0,                                  | SB05_0.1,  |             |                |                        |            |                    |                    |                 |
| SB05_1.0                                   |            |             |                |                        |            |                    |                    |                 |
| HDPE Soil Jar (EP231X)                     |            |             |                |                        |            |                    |                    |                 |
| SB01_0.1,                                  | SB01_1.0,  | 30-Nov-2016 | 08-Dec-2016    | 29-May-2017            | 1          | 08-Dec-2016        | 17-Jan-2017        | ✓               |
| SB04_0.15,                                 | SB04_2.0,  |             |                |                        |            |                    |                    |                 |
| MW01_0.1,                                  | MW01_9.0,  |             |                |                        |            |                    |                    |                 |
| MW02_0.1,                                  | MW02_13.5, |             |                |                        |            |                    |                    |                 |
| MW03_0.1,                                  | MW03_1.0,  |             |                |                        |            |                    |                    |                 |
| FD02,                                      | FD03       |             |                |                        |            |                    |                    |                 |
| EP231D: (n:2) Fluorotelomer Sulfonic Acids |            |             |                |                        |            |                    |                    |                 |
| HDPE Soil Jar (EP231X)                     |            |             |                |                        |            |                    |                    |                 |
| SS01,                                      | SS02,      | 29-Nov-2016 | 08-Dec-2016    | 28-May-2017            | 1          | 08-Dec-2016        | 17-Jan-2017        | ✓               |
| SS03,                                      | SS04,      |             |                |                        |            |                    |                    |                 |
| SS05,                                      | SS06,      |             |                |                        |            |                    |                    |                 |
| SS07,                                      | SB02_0.1,  |             |                |                        |            |                    |                    |                 |
| SB02_1.0,                                  | SB03_0.1,  |             |                |                        |            |                    |                    |                 |
| SB03_1.0,                                  | SB05_0.1,  |             |                |                        |            |                    |                    |                 |
| SB05_1.0                                   |            |             |                |                        |            |                    |                    |                 |
| HDPE Soil Jar (EP231X)                     |            |             |                |                        |            |                    |                    |                 |
| SB01_0.1,                                  | SB01_1.0,  | 30-Nov-2016 | 08-Dec-2016    | 29-May-2017            | ✓          | 08-Dec-2016        | 17-Jan-2017        | ✓               |
| SB04_0.15,                                 | SB04_2.0,  |             |                |                        |            |                    |                    |                 |
| MW01_0.1,                                  | MW01_9.0,  |             |                |                        |            |                    |                    |                 |
| MW02_0.1,                                  | MW02_13.5, |             |                |                        |            |                    |                    |                 |
| MW03_0.1,                                  | MW03_1.0,  |             |                |                        |            |                    |                    |                 |
| FD02,                                      | FD03       |             |                |                        |            |                    |                    |                 |

| Page       | : 9 of 14     |
|------------|---------------|
| Work Order | : EM1614608   |
| Client     | : GHD PTY LTD |
| Project    | 212558305     |



| Matrix: SOIL                                      |            |             |                |                        | Evaluatior | n: × = Holding time | breach ; 🗸 = With | n holding t           |
|---------------------------------------------------|------------|-------------|----------------|------------------------|------------|---------------------|-------------------|-----------------------|
| Method                                            |            | Sample Date | E>             | traction / Preparation |            | Analysis            |                   |                       |
| Container / Client Sample ID(s)                   |            |             | Date extracted | Due for extraction     | Evaluation | Date analysed       | Due for analysis  | Evaluati              |
| EP231P: PFAS Sums                                 |            |             |                |                        |            |                     | ·                 |                       |
| HDPE Soil Jar (EP231X)                            |            |             |                |                        |            |                     |                   |                       |
| SS01,                                             | SS02,      | 29-Nov-2016 | 08-Dec-2016    | 28-May-2017            | 1          | 08-Dec-2016         | 17-Jan-2017       | <ul> <li>✓</li> </ul> |
| SS03,                                             | SS04,      |             |                |                        |            |                     |                   |                       |
| SS05,                                             | SS06,      |             |                |                        |            |                     |                   |                       |
| SS07,                                             | SB02_0.1,  |             |                |                        |            |                     |                   |                       |
| SB02_1.0,                                         | SB03_0.1,  |             |                |                        |            |                     |                   |                       |
| SB03_1.0,                                         | SB05 0.1,  |             |                |                        |            |                     |                   |                       |
| SB05 1.0                                          | _ ,        |             |                |                        |            |                     |                   |                       |
| HDPE Soil Jar (EP231X)                            |            |             |                |                        |            |                     |                   |                       |
| SB01_0.1,                                         | SB01_1.0,  | 30-Nov-2016 | 08-Dec-2016    | 29-May-2017            | 1          | 08-Dec-2016         | 17-Jan-2017       | ✓                     |
| SB04_0.15,                                        | SB04_2.0,  |             |                |                        |            |                     |                   |                       |
| MW01_0.1,                                         | MW01_9.0,  |             |                |                        |            |                     |                   |                       |
| MW02_0.1,                                         | MW02_13.5, |             |                |                        |            |                     |                   |                       |
| MW03_0.1,                                         | MW03_1.0,  |             |                |                        |            |                     |                   |                       |
| FD02,                                             | FD03       |             |                |                        |            |                     |                   |                       |
| Matrix: WATER                                     |            |             |                |                        | Evaluatior | n: × = Holding time | breach ; 🗸 = With | n holding             |
| Method                                            |            | Sample Date | Ex             | traction / Preparation |            | Analysis            |                   |                       |
| Container / Client Sample ID(s)                   |            |             | Date extracted | Due for extraction     | Evaluation | Date analysed       | Due for analysis  | Evaluat               |
| EA005P: pH by PC Titrator                         |            |             |                |                        |            |                     |                   |                       |
| Clear Plastic Bottle - Natural (EA005-P)          |            |             |                |                        |            |                     |                   |                       |
| SW01,                                             | SW02,      | 29-Nov-2016 |                |                        |            | 06-Dec-2016         | 29-Nov-2016       | x                     |
| SW03,                                             | FD01       |             |                |                        |            |                     |                   |                       |
| EA015: Total Dissolved Solids dried at 180 ± 5 °C | :          |             |                |                        |            |                     |                   |                       |
| Clear Plastic Bottle - Natural (EA015H)           |            |             |                |                        |            |                     |                   |                       |
| SW01,                                             | SW02,      | 29-Nov-2016 |                |                        |            | 06-Dec-2016         | 06-Dec-2016       | <ul> <li>✓</li> </ul> |
| S/M/03                                            | ED01       |             |                |                        |            | 1                   |                   |                       |

| Clear Plastic Bottle - Natural (EA005-P)  |          |             |      |                 |             |            |
|-------------------------------------------|----------|-------------|------|-----------------|-------------|------------|
| SW01,                                     | SW02,    | 29-Nov-2016 | <br> | <br>06-Dec-2016 | 29-Nov-2016 | <b>5</b> C |
| SW03,                                     | FD01     |             |      |                 |             |            |
| EA015: Total Dissolved Solids dried at 18 | 0 ± 5 °C |             |      |                 |             |            |
| Clear Plastic Bottle - Natural (EA015H)   |          |             |      |                 |             |            |
| SW01,                                     | SW02,    | 29-Nov-2016 | <br> | <br>06-Dec-2016 | 06-Dec-2016 | ✓          |
| SW03,                                     | FD01     |             |      |                 |             |            |
| ED037P: Alkalinity by PC Titrator         |          |             |      |                 |             |            |
| Clear Plastic Bottle - Natural (ED037-P)  |          |             |      |                 |             |            |
| SW01,                                     | SW02,    | 29-Nov-2016 | <br> | <br>06-Dec-2016 | 13-Dec-2016 | 1          |
| SW03                                      |          |             |      |                 |             |            |
| ED041G: Sulfate (Turbidimetric) as SO4 2  | - by DA  |             |      |                 |             |            |
| Clear Plastic Bottle - Natural (ED041G)   |          |             |      |                 |             |            |
| SW01,                                     | SW02,    | 29-Nov-2016 | <br> | <br>08-Dec-2016 | 27-Dec-2016 | ✓          |
| SW03                                      |          |             |      |                 |             |            |
| ED045G: Chloride by Discrete Analyser     |          |             |      |                 |             |            |
| Clear Plastic Bottle - Natural (ED045G)   |          |             |      |                 |             |            |
| SW01,                                     | SW02,    | 29-Nov-2016 | <br> | <br>08-Dec-2016 | 27-Dec-2016 | ✓          |
| SW03                                      |          |             |      |                 |             |            |
|                                           |          |             |      | 1               |             |            |

| Page       | : 10 of 14    |
|------------|---------------|
| Work Order | : EM1614608   |
| Client     | : GHD PTY LTD |
| Project    | 212558305     |



| Matrix: WATER                                            |               |             |                |                        | Evaluation | : × = Holding time | breach ; ✓ = Withi | n holding time |
|----------------------------------------------------------|---------------|-------------|----------------|------------------------|------------|--------------------|--------------------|----------------|
| Method                                                   |               | Sample Date | Ex             | traction / Preparation |            |                    | Analysis           |                |
| Container / Client Sample ID(s)                          |               |             | Date extracted | Due for extraction     | Evaluation | Date analysed      | Due for analysis   | Evaluation     |
| ED093F: Dissolved Major Cations                          |               |             |                |                        |            |                    |                    |                |
| Clear Plastic Bottle - Natural (ED093F)<br>SW01,<br>SW03 | SW02,         | 29-Nov-2016 |                |                        |            | 07-Dec-2016        | 06-Dec-2016        | ×              |
| EP231A: Perfluoroalkyl Sulfonic Acids                    |               |             |                |                        |            |                    |                    |                |
| HDPE (no PTFE) (EP231X)<br>SW01,<br>SW03,                | SW02,<br>FD01 | 29-Nov-2016 |                |                        |            | 08-Dec-2016        | 28-May-2017        | 1              |
| EP231B: Perfluoroalkyl Carboxylic Acids                  |               |             |                |                        |            |                    |                    |                |
| HDPE (no PTFE) (EP231X)<br>SW01,<br>SW03,                | SW02,<br>FD01 | 29-Nov-2016 |                |                        |            | 08-Dec-2016        | 28-May-2017        | ~              |
| EP231C: Perfluoroalkyl Sulfonamides                      |               |             |                |                        |            |                    |                    |                |
| HDPE (no PTFE) (EP231X)<br>SW01,<br>SW03,                | SW02,<br>FD01 | 29-Nov-2016 |                |                        |            | 08-Dec-2016        | 28-May-2017        | 1              |
| EP231D: (n:2) Fluorotelomer Sulfonic Acids               |               |             |                |                        |            |                    |                    |                |
| HDPE (no PTFE) (EP231X)<br>SW01,<br>SW03,                | SW02,<br>FD01 | 29-Nov-2016 |                |                        |            | 08-Dec-2016        | 28-May-2017        | ~              |
| EP231P: PFAS Sums                                        |               |             |                |                        |            |                    |                    |                |
| HDPE (no PTFE) (EP231X)<br>SW01,<br>SW03,                | SW02,<br>FD01 | 29-Nov-2016 |                |                        |            | 08-Dec-2016        | 28-May-2017        | ~              |

| Page       | : 11 of 14    |
|------------|---------------|
| Work Order | : EM1614608   |
| Client     | : GHD PTY LTD |
| Project    | 212558305     |

Major Cations - Dissolved

Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS



### **Quality Control Parameter Frequency Compliance**

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

2

2

ED093F

EP231X

17

19

11.76

10.53

10.00

10.00

 $\checkmark$ 

 $\checkmark$ 

NEPM 2013 B3 & ALS QC Standard

NEPM 2013 B3 & ALS QC Standard

| Analyca         Method         OC         Renular         Actual         Expected         Evented         Evented           abarbary Duplicates (DLP)         ED0038         3         25         12.00         10.00         ✓         NEPM 2013 B3 & ALS QC Standard           Exchangeable Cations         ED003         2         20         10.00         ✓         NEPM 2013 B3 & ALS QC Standard           Exchangeable Cations with perfeatment         ED006         1         2         10.00         ✓         NEPM 2013 B3 & ALS QC Standard           Exchangeable Cations with perfeatment         ED006         1         2         10.00         ✓         NEPM 2013 B3 & ALS QC Standard           Exchangeable Cations with perfeatment         ED005         1         2         10.00         ✓         NEPM 2013 B3 & ALS QC Standard           Term And Polyticorcally Substances (PFAS) by LCMSMS         EP231X         4         35         11.14         10.00         ✓         NEPM 2013 B3 & ALS QC Standard           Total Metais by ICP-AES         EE00057         1         5         20.00         5.00         ✓         NEPM 2013 B3 & ALS QC Standard           Exchangeable Cations on Alkaline Sola         ED0007         1         5         20.00         5.00         ✓         NEPM 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Matrix: SOIL                                         |           |    |         | Evaluatio | n: × = Quality Co | ntrol frequency | not within specification ; $\checkmark$ = Quality Control frequency within specification |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|-----------|----|---------|-----------|-------------------|-----------------|------------------------------------------------------------------------------------------|
| Name         Other         Other         Name         Decision         Name         Decision         Decision           Cathors - polule by (CP-AES         ED003         3         25         12.00         10.00         ✓         NEPM 2013 B3 & ALS QC Standard           Exchangeable Cators on Alkine Sols         ED005         2         20         10.00         ✓         NEPM 2013 B3 & ALS QC Standard           Exchangeable Cators on Alkine Sols         ED005         2         20         10.00         ✓         NEPM 2013 B3 & ALS QC Standard           Exchangeable Cators on Alkine Sols         ED005         2         20         10.00         ✓         NEPM 2013 B3 & ALS QC Standard           Par-and PolyToursky/Substances (PAS) by LCMSMS         EP231X         4         40         10.00         ✓         NEPM 2013 B3 & ALS QC Standard           Catory Content         Far-and PolyToursky/Substances (PAS) by LCMSMS         EP231X         4         55         16.00         10.00         ✓         NEPM 2013 B3 & ALS QC Standard           Catory Control Samplas (LCS)         E00007         4         25         16.00         10.00         ✓         NEPM 2013 B3 & ALS QC Standard           Exchangeable Cators on Malaine Sola         ED0007         1         5         20.00 <td< th=""><th>Quality Control Sample Type</th><th></th><th>С</th><th>count</th><th></th><th>Rate (%)</th><th></th><th>Quality Control Specification</th></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Quality Control Sample Type                          |           | С  | count   |           | Rate (%)          |                 | Quality Control Specification                                                            |
| Cation - soluble by ICP AES     ED093     3     25     1.00     1.00     ✓     NEPM 2015 B3 & ALS OC Standard       Exchangeable Cations on Alkaline Solis     ED000     2     200     10.00     ✓     NEPM 2015 B3 & ALS OC Standard       Exchangeable Cations on Alkaline Solis     ED000     2     200     10.00     ✓     NEPM 2015 B3 & ALS OC Standard       Exchangeable Cations with pre-treatment     ED005     4     400     10.00     ✓     NEPM 2015 B3 & ALS OC Standard       Fer and Polytuoroakyl Substances (PFAS) by LCMSMS     EP231X     4     456     11.00     ✓     NEPM 2015 B3 & ALS OC Standard       Total Metts by (CP-AES     EE0005T     4     25     16.00     10.00     ✓     NEPM 2015 B3 & ALS OC Standard       Catords Standard Catoria     EE0005T     4     25     16.00     10.00     ✓     NEPM 2015 B3 & ALS OC Standard       Catords Catoria     EE0005T     2     25     8.00     5.00     ✓     NEPM 2015 B3 & ALS OC Standard       Exchangeable Cations on Akaline Solis     ED0005     1     20     5.00     ✓     NEPM 2015 B3 & ALS OC Standard       Exchangeable Cations on Akaline Solis     ED0005     1     20     5.00     S.00     ✓     NEPM 2015 B3 & ALS OC Standard       Exchangeable Cations on Akaline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Analytical Methods                                   | Method    | OC | Reaular | Actual    | Expected          | Evaluation      |                                                                                          |
| Exchangeable Calains         Image: Construct of the const | Laboratory Duplicates (DUP)                          |           |    |         |           |                   |                 |                                                                                          |
| Exchangeable Cations on Akaline Solis         ED008         2         20         10.00         ✓         NEPM 2013 B3 & ALS OC Standard           Exchangeable Cations with pre-treatment         ED008         1         2         50.00         10.00         ✓         NEPM 2013 B3 & ALS OC Standard           Per- and Polytionzalkyl Subtances (PFAS) by LCMSMS         EP231X         4         35         11.43         10.00         ✓         NEPM 2013 B3 & ALS OC Standard           Told Matis by ICP-AES         EE00057         4         25         18.00         ✓         NEPM 2013 B3 & ALS OC Standard           Told Matis by ICP-AES         EE00037         4         25         18.00         10.00         ✓         NEPM 2013 B3 & ALS OC Standard           Cations - soluble by ICP-AES         EE0033         2         25         8.00         S.00         ✓         NEPM 2013 B3 & ALS OC Standard           Exchangeable Cations on Akaline Solis         ED0007         1         5         20.00         S.00         ✓         NEPM 2013 B3 & ALS OC Standard           Exchangeable Cations on Akaline Solis         ED0007         1         5         5.00         ✓         NEPM 2013 B3 & ALS OC Standard           Exchangeable Cations on Akaline Solis         ED0005         1         20         S.00 </td <td>Cations - soluble by ICP-AES</td> <td>ED093S</td> <td>3</td> <td>25</td> <td>12.00</td> <td>10.00</td> <td>✓</td> <td>NEPM 2013 B3 &amp; ALS QC Standard</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Cations - soluble by ICP-AES                         | ED093S    | 3  | 25      | 12.00     | 10.00             | ✓               | NEPM 2013 B3 & ALS QC Standard                                                           |
| Exchangeable Calions with pre-treatment         ED008         1         2         50.00         10.00         ✓         NEPM 2013 B3 & ALS QC Standard           Moisture Content         EAGS-103         4         40         10.00         ✓         NEPM 2013 B3 & ALS QC Standard           Per- and Polyfluorallyl Substances (PFAS) by LCMSMS         EE2005T         4         25         11.43         10.00         ✓         NEPM 2013 B3 & ALS QC Standard           Claid Organic Carbon         EE0005T         4         25         12.00         10.00         ✓         NEPM 2013 B3 & ALS QC Standard           Cathor         Soluble by (CP-AES         EE0005T         4         25         12.00         10.00         ✓         NEPM 2013 B3 & ALS QC Standard           Cathor         Soluble by (CP-AES         ED009S         2         25         8.00         5.00         ✓         NEPM 2013 B3 & ALS QC Standard           Cathorabil Cathons on Makine Solis         ED009S         2         25         8.00         5.00         ✓         NEPM 2013 B3 & ALS QC Standard           Cathorabil Solis         ED009S         2         25         8.00         5.00         ✓         NEPM 2013 B3 & ALS QC Standard           Cathorabil Solis         ED009S         2         25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Exchangeable Cations                                 | ED007     | 1  | 5       | 20.00     | 10.00             | ✓               | NEPM 2013 B3 & ALS QC Standard                                                           |
| Module         EAD55-103         4         40         10.00         10.00         ✓         NEPM 2013 B3 & ALS QC Standard           Per- and Polyfluorabily Substances (PFAS) by LCMSMS         EP231X         4         35         11.43         10.00         ✓         NEPM 2013 B3 & ALS QC Standard           Total Metals by ICP-AES         E00007         4         25         16.00         10.00         ✓         NEPM 2013 B3 & ALS QC Standard           Caloraic Carbon         EP003         3         25         12.00         10.00         ✓         NEPM 2013 B3 & ALS QC Standard           Caloraic Carbon         ED0063         2         25         8.00         5.00         ✓         NEPM 2013 B3 & ALS QC Standard           Caloraic Schools         ED0061         1         20         5.00         5.00         ✓         NEPM 2013 B3 & ALS QC Standard           Schongeable Cations on Alkaline Solts         ED0061         20         5.00         5.00         ✓         NEPM 2013 B3 & ALS QC Standard           Schongeable Cations on Alkaline Solts         ED0005         1         20         5.00         5.00         ✓         NEPM 2013 B3 & ALS QC Standard           Schongeable Cations on Alkaline Solts         ED0005         2         25         8.00         5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Exchangeable Cations on Alkaline Soils               | ED006     | 2  | 20      | 10.00     | 10.00             | ✓               | NEPM 2013 B3 & ALS QC Standard                                                           |
| Per: and Polyfluoroalkyl Substances (PFAS) by LCMSMS         EP23X         4         35         11.43         10.00         ✓         NEPM 2013 B3 & ALS QC Standard           Total Melia by (CP-AES         EG005T         4         25         11.00         10.00         ✓         NEPM 2013 B3 & ALS QC Standard           Catolor carbon         ED0033         2         25         10.00         ✓         NEPM 2013 B3 & ALS QC Standard           Cators - souble by (ICP-AES         ED003         2         25         8.00         5.00         ✓         NEPM 2013 B3 & ALS QC Standard           Exchangeable Cations on Malline Soils         ED0007         1         5         20.00         5.00         ✓         NEPM 2013 B3 & ALS QC Standard           Exchangeable Cations with pre-treatment         ED006         1         20         5.00         5.00         ✓         NEPM 2013 B3 & ALS QC Standard           Cators on Malline Soils         ED007         1         2         50.00         5.00         ✓         NEPM 2013 B3 & ALS QC Standard           Cators on Alkaline Soils         ED007         2         25         8.00         5.00         ✓         NEPM 2013 B3 & ALS QC Standard           Cators on Alkaline Soils         ED007         1         6         20.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Exchangeable Cations with pre-treatment              | ED008     | 1  | 2       | 50.00     | 10.00             | ✓               | NEPM 2013 B3 & ALS QC Standard                                                           |
| Total Metals by ICP-AES       EG005T       4       25       16.00       ✓       NEPM 2013 B3 & ALS QC Standard         Color Grain Carbon       EP003       3       25       12.00       10.00       ✓       NEPM 2013 B3 & ALS QC Standard         Cations - soluble by ICP-AES       ED0093       2       25       8.00       5.00       ✓       NEPM 2013 B3 & ALS QC Standard         Exchangeable Cations on Alkaline Soils       ED0007       1       5       20.00       5.00       ✓       NEPM 2013 B3 & ALS QC Standard         Exchangeable Cations on Alkaline Soils       ED0006       1       20       5.00       5.00       ✓       NEPM 2013 B3 & ALS QC Standard         Exchangeable Cations with pre-treatment       ED0008       1       22       50.00       5.00       ✓       NEPM 2013 B3 & ALS QC Standard         Pre- and Polyfluoroatky Substances (PFAS) by LCMSMS       EP231X       2       35       6.71       5.00       ✓       NEPM 2013 B3 & ALS QC Standard         Cotions - soluble by ICP-AES       EG005T       2       25       8.00       5.00       ✓       NEPM 2013 B3 & ALS QC Standard         Cotions - soluble by ICP-AES       EG005T       2       25       8.00       5.00       ✓       NEPM 2013 B3 & ALS QC Standard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Moisture Content                                     | EA055-103 | 4  | 40      | 10.00     | 10.00             | ✓               | NEPM 2013 B3 & ALS QC Standard                                                           |
| Total Organic Carbon         EP003         3         25         12.00         10.00         ✓         NEPM 2013 B3 & ALS QC Standard           Laboratory Control Samples (LCS)         E00093         2         25         8.00         5.00         ✓         NEPM 2013 B3 & ALS QC Standard           Exchangeable Cations on Alkaline Solls         ED006         1         20         5.00         ✓         NEPM 2013 B3 & ALS QC Standard           Exchangeable Cations on Alkaline Solls         ED006         1         20         5.00         ✓         NEPM 2013 B3 & ALS QC Standard           Exchangeable Cations on Alkaline Solls         ED006         1         2         5.00         ✓         NEPM 2013 B3 & ALS QC Standard           Standard Dip/Houroalky Stabustances (PFAS) by LCMSMS         EP21X         2         35         5.71         5.00         ✓         NEPM 2013 B3 & ALS QC Standard           Total Mata by (DP-AES         EC0093         2         25         8.00         5.00         ✓         NEPM 2013 B3 & ALS QC Standard           Exchangeable Cations on Alkaline Solls         ED007         1         5         2.00         5.00         ✓         NEPM 2013 B3 & ALS QC Standard           Exchangeable Cations on Alkaline Solls         ED006         1         20         5.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS | EP231X    | 4  | 35      | 11.43     | 10.00             | ✓               | NEPM 2013 B3 & ALS QC Standard                                                           |
| Laboratory Control Samples (LCS)         ED0935         2         25         8.00         5.00         ✓         NEPM 2013 B3 & ALS QC Standard           Cations - soluble by (CP-AES         ED007         1         5         20.00         5.00         ✓         NEPM 2013 B3 & ALS QC Standard           Exchangeable Cations on Alkaline Soils         ED006         1         20         5.00         5.00         ✓         NEPM 2013 B3 & ALS QC Standard           Exchangeable Cations on Alkaline Soils         ED006         1         20         5.00         5.00         ✓         NEPM 2013 B3 & ALS QC Standard           Per- and Polyflucoxalky Substances (PFAS) by LCMSMS         EP221X         2         35         5.71         5.00         ✓         NEPM 2013 B3 & ALS QC Standard           Per- and Polyflucoxalky Substances (PFAS) by LCMSMS         EP221X         2         5         8.00         5.00         ✓         NEPM 2013 B3 & ALS QC Standard           Colation - soluble by ICP-AES         EG0067         2         25         8.00         5.00         ✓         NEPM 2013 B3 & ALS QC Standard           Cations - soluble by ICP-AES         ED007         1         5         20.00         5.00         ✓         NEPM 2013 B3 & ALS QC Standard           Exchangeable Cations on Alkaline Soils                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Total Metals by ICP-AES                              | EG005T    | 4  | 25      | 16.00     | 10.00             | ✓               | NEPM 2013 B3 & ALS QC Standard                                                           |
| Cations -soluble by ICP-AES         Eponsol         2         25         6.00         5.00         √         NEPM 2013 B3 & ALS QC Standard           Exchangeable Cations on Akaine Solis         ED000         1         5         20.00         5.00         ✓         NEPM 2013 B3 & ALS QC Standard           Exchangeable Cations on Akaine Solis         ED0006         1         20         50.00         5.00         ✓         NEPM 2013 B3 & ALS QC Standard           Exchangeable Cations with pre-treatment         ED0005         1         2         50.00         5.00         ✓         NEPM 2013 B3 & ALS QC Standard           Per- and Polyfluoralky Substances (PFAS) by LCMSMS         EP231X         2         35.0         5.00         ✓         NEPM 2013 B3 & ALS QC Standard           Total Metabs by ICP-AES         EE0005         2         25         8.00         5.00         ✓         NEPM 2013 B3 & ALS QC Standard           Cations -soluble by ICP-AES         EE0005         2         25         8.00         5.00         ✓         NEPM 2013 B3 & ALS QC Standard           Exchangeable Cations on Akaine Solis         ED0007         1         5         20.00         5.00         ✓         NEPM 2013 B3 & ALS QC Standard           Exchangeable Cations on Akaine Solis         ED0007         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Total Organic Carbon                                 | EP003     | 3  | 25      | 12.00     | 10.00             | ✓               | NEPM 2013 B3 & ALS QC Standard                                                           |
| Cations -soluble by ICP-AES         Eponsol         2         25         6.00         5.00         √         NEPM 2013 B3 & ALS QC Standard           Exchangeable Cations on Akaine Solis         ED000         1         5         20.00         5.00         ✓         NEPM 2013 B3 & ALS QC Standard           Exchangeable Cations on Akaine Solis         ED0006         1         20         50.00         5.00         ✓         NEPM 2013 B3 & ALS QC Standard           Exchangeable Cations with pre-treatment         ED0005         1         2         50.00         5.00         ✓         NEPM 2013 B3 & ALS QC Standard           Per- and Polyfluoralky Substances (PFAS) by LCMSMS         EP231X         2         35.0         5.00         ✓         NEPM 2013 B3 & ALS QC Standard           Total Metabs by ICP-AES         EE0005         2         25         8.00         5.00         ✓         NEPM 2013 B3 & ALS QC Standard           Cations -soluble by ICP-AES         EE0005         2         25         8.00         5.00         ✓         NEPM 2013 B3 & ALS QC Standard           Exchangeable Cations on Akaine Solis         ED0007         1         5         20.00         5.00         ✓         NEPM 2013 B3 & ALS QC Standard           Exchangeable Cations on Akaine Solis         ED0007         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Laboratory Control Samples (LCS)                     |           |    |         |           |                   |                 |                                                                                          |
| Exchangeable Cations on Alkaline Solls         ED006         1         20         5.00         7.00         ✓         NEPM 2013 B3 & ALS QC Standard           Exchangeable Cations with pre-treatment         ED0008         1         2         50.00         5.00         ✓         NEPM 2013 B3 & ALS QC Standard           Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS         EP231X         2         35         5.71         5.00         ✓         NEPM 2013 B3 & ALS QC Standard           Total Metals by LCP-AES         EC0005         2         25         8.00         5.00         ✓         NEPM 2013 B3 & ALS QC Standard           Cations - soluble by LCP-AES         EC0005         2         25         8.00         5.00         ✓         NEPM 2013 B3 & ALS QC Standard           Exchangeable Cations with pre-treatment         ED003         2         25         8.00         5.00         ✓         NEPM 2013 B3 & ALS QC Standard           Exchangeable Cations with pre-treatment         ED003         2         25         8.00         5.00         ✓         NEPM 2013 B3 & ALS QC Standard           Exchangeable Cations with pre-treatment         ED006         1         2         5.00         5.00         ✓         NEPM 2013 B3 & ALS QC Standard           Exchangeable Cations with pre-treatment <td>Cations - soluble by ICP-AES</td> <td>ED093S</td> <td>2</td> <td>25</td> <td>8.00</td> <td>5.00</td> <td>✓</td> <td>NEPM 2013 B3 &amp; ALS QC Standard</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Cations - soluble by ICP-AES                         | ED093S    | 2  | 25      | 8.00      | 5.00              | ✓               | NEPM 2013 B3 & ALS QC Standard                                                           |
| Exchangeable Cations with pre-treatment         ED000a         1         2         50.00         5.00         ✓         NEPM 2013 B3 & ALS QC Standard           Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS         EF231X         2         35         5.71         5.00         ✓         NEPM 2013 B3 & ALS QC Standard           Total Metals by ICP-AES         EG005T         2         25         8.00         5.00         ✓         NEPM 2013 B3 & ALS QC Standard           Total Metals by ICP-AES         ED003         2         25         8.00         5.00         ✓         NEPM 2013 B3 & ALS QC Standard           Cations - soluble by ICP-AES         ED003S         2         25         8.00         5.00         ✓         NEPM 2013 B3 & ALS QC Standard           Cations - soluble by ICP-AES         ED007         1         5         20.00         5.00         ✓         NEPM 2013 B3 & ALS QC Standard           Exchangeable Cations on Alkaline Solis         ED006         1         20         5.00         5.00         ✓         NEPM 2013 B3 & ALS QC Standard           Exchangeable Cations with pre-treatment         ED0008         1         2         5.00         5.00         ✓         NEPM 2013 B3 & ALS QC Standard           Total Metals by ICP-AES         EG0005T         2<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Exchangeable Cations                                 | ED007     | 1  | 5       | 20.00     | 5.00              | ✓               | NEPM 2013 B3 & ALS QC Standard                                                           |
| Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMSEP231X2355.715.00 $\checkmark$ NEPM 2013 B3 & ALS QC StandardTotal Metals by ICP-AESEG005T2258.005.00 $\checkmark$ NEPM 2013 B3 & ALS QC StandardTotal Organic CarbonEP0032258.005.00 $\checkmark$ NEPM 2013 B3 & ALS QC StandardMethod Blanks (MB)Cations - soluble by ICP-AESED093S2258.005.00 $\checkmark$ NEPM 2013 B3 & ALS QC StandardExchangeable Cations on Alkaline SoilsED0071520.005.00 $\checkmark$ NEPM 2013 B3 & ALS QC StandardExchangeable Cations on Alkaline SoilsED00061205.005.00 $\checkmark$ NEPM 2013 B3 & ALS QC StandardExchangeable Cations on Alkaline SoilsED00081205.005.00 $\checkmark$ NEPM 2013 B3 & ALS QC StandardExchangeable Cations on Alkaline SoilsED00081205.005.00 $\checkmark$ NEPM 2013 B3 & ALS QC StandardExchangeable Cations on Alkaline SoilsED00081250.005.00 $\checkmark$ NEPM 2013 B3 & ALS QC StandardTotal Metals by ICP-AESEG005T2258.005.00 $\checkmark$ NEPM 2013 B3 & ALS QC StandardTotal Metals by ICP-AESEG005T2258.005.00 $\checkmark$ NEPM 2013 B3 & ALS QC StandardTotal Metals by ICP-AESEg005T0250.005.00 $\checkmark$ NEPM 2013 B3 & ALS QC StandardTotal Metals by ICP-AESEg005T <td>Exchangeable Cations on Alkaline Soils</td> <td>ED006</td> <td>1</td> <td>20</td> <td>5.00</td> <td>5.00</td> <td>✓</td> <td>NEPM 2013 B3 &amp; ALS QC Standard</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Exchangeable Cations on Alkaline Soils               | ED006     | 1  | 20      | 5.00      | 5.00              | ✓               | NEPM 2013 B3 & ALS QC Standard                                                           |
| Total Metals by ICP-AES       EG005T       2       25       8.00       5.00       ✓       NEPM 2013 B3 & ALS QC Standard         Vethod Blanks (MB)       EP003       2       25       8.00       5.00       ✓       NEPM 2013 B3 & ALS QC Standard         Vethod Blanks (MB)       E       E       South       South       NEPM 2013 B3 & ALS QC Standard         Cations - soluble by ICP-AES       E       E0003S       2       25       8.00       5.00       ✓       NEPM 2013 B3 & ALS QC Standard         Exchangeable Cations       Mainte Soils       ED007       1       5       20.00       5.00       ✓       NEPM 2013 B3 & ALS QC Standard         Exchangeable Cations on Alkaline Soils       ED006       1       20       5.00       5.00       ✓       NEPM 2013 B3 & ALS QC Standard         Exchangeable Cations with pre-treatment       ED006       1       20       5.00       5.00       ✓       NEPM 2013 B3 & ALS QC Standard         Per - and Polyfluoroalkyl Substances (PFAS) by LCMSMS       EP231X       2       35       5.71       5.00       ✓       NEPM 2013 B3 & ALS QC Standard         Per - and Polyfluoroalkyl Substances (PFAS) by LCMSMS       EP231X       2       35       5.71       5.00       ✓       NEPM 2013 B3 & ALS QC Standard<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Exchangeable Cations with pre-treatment              | ED008     | 1  | 2       | 50.00     | 5.00              | ✓               | NEPM 2013 B3 & ALS QC Standard                                                           |
| Total Organic CarbonEP0032258.005.00✓NEPM 2013 B3 & ALS QC StandardMethod Blanks (MB)Cations - soluble by ICP-AESED09352258.005.00✓NEPM 2013 B3 & ALS QC StandardExchangeable Cations on Alkaline SolisED0061520.005.00✓NEPM 2013 B3 & ALS QC StandardExchangeable Cations on Alkaline SolisED0061205.005.00✓NEPM 2013 B3 & ALS QC StandardExchangeable Cations on Alkaline SolisED0061205.005.00✓NEPM 2013 B3 & ALS QC StandardExchangeable Cations with pre-treatmentED0081250.005.00✓NEPM 2013 B3 & ALS QC StandardExchangeable Cations with pre-treatmentED0081250.005.00✓NEPM 2013 B3 & ALS QC StandardTotal Metals by ICP-AESEG00572258.005.00✓NEPM 2013 B3 & ALS QC StandardTotal Organic CarbonEP0032258.005.00✓NEPM 2013 B3 & ALS QC StandardMatrix Sylkes (MS)Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMSEP231X2355.715.00✓NEPM 2013 B3 & ALS QC StandardTotal Metals by ICP-AESEvaluationEQ00570250.005.00¥NEPM 2013 B3 & ALS QC StandardTotal Metals by ICP-AESEC00570250.005.00¥NEPM 2013 B3 & ALS QC StandardCaultry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS | EP231X    | 2  | 35      | 5.71      | 5.00              | ✓               | NEPM 2013 B3 & ALS QC Standard                                                           |
| Method Blanks (MB)       Cations - soluble by ICP-AES       ED093S       2       25       8.00       5.00       ✓       NEPM 2013 B3 & ALS QC Standard         Exchangeable Cations       ED007       1       5       20.00       5.00       ✓       NEPM 2013 B3 & ALS QC Standard         Exchangeable Cations on Alkaline Soils       ED006       1       20       5.00       ✓       NEPM 2013 B3 & ALS QC Standard         Exchangeable Cations with pre-treatment       ED008       1       2       50.00       5.00       ✓       NEPM 2013 B3 & ALS QC Standard         Certain and Polyfluoroalkyl Substances (PFAS) by LCMSMS       EP231X       2       35       5.71       5.00       ✓       NEPM 2013 B3 & ALS QC Standard         Total Organic Carbon       EP003       2       25       8.00       5.00       ✓       NEPM 2013 B3 & ALS QC Standard         Matrix Spikes (MS)       EP231X       2       35       5.71       5.00       ✓       NEPM 2013 B3 & ALS QC Standard         Per - and Polyfluoroalkyl Substances (PFAS) by LCMSMS       EP231X       2       35       5.71       5.00       ✓       NEPM 2013 B3 & ALS QC Standard         Per - and Polyfluoroalkyl Substances (PFAS) by LCMSMS       EP231X       2       35       5.71       5.00       ✓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Total Metals by ICP-AES                              | EG005T    | 2  | 25      | 8.00      | 5.00              | ✓               | NEPM 2013 B3 & ALS QC Standard                                                           |
| Cations - soluble by ICP-AESED093S2258.005.00✓NEPM 2013 B3 & ALS QC StandardExchangeable CationsED0071520.005.00✓NEPM 2013 B3 & ALS QC StandardExchangeable Cations on Alkaline SoilsED0061205.005.00✓NEPM 2013 B3 & ALS QC StandardExchangeable Cations on Alkaline SoilsED0061205.005.00✓NEPM 2013 B3 & ALS QC StandardExchangeable Cations with pre-treatmentED0081250.005.00✓NEPM 2013 B3 & ALS QC StandardPer- and Polyfluoroalkyl Substances (PFAS) by LCMSMSEP231X2355.715.00✓NEPM 2013 B3 & ALS QC StandardTotal Metals by ICP-AESEE0005T2258.005.00✓NEPM 2013 B3 & ALS QC StandardMatrix Spikes (MS)Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMSEP231X2355.715.00✓NEPM 2013 B3 & ALS QC StandardMatrix Spikes (MS)Per- and Polyfluoralkyl Substances (PFAS) by LCMSMSEP231X2355.715.00✓NEPM 2013 B3 & ALS QC StandardMatrix WATERCuality Control Sample TypeAnalytical MethodsQCReaularReaularReaularQuality Control SpecificationLaboratory Duplicates (DUP)Analytical MethodsMethodQCReaularEvaluationQuality Control SpecificationAklainity by PC TitratorED037-P22010.0010.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Total Organic Carbon                                 | EP003     | 2  | 25      | 8.00      | 5.00              | ✓               | NEPM 2013 B3 & ALS QC Standard                                                           |
| Exchangeable CationsED0071520.005.00✓NEPM 2013 B3 & ALS QC StandardExchangeable Cations on Alkaline SoilsED0061205.005.00✓NEPM 2013 B3 & ALS QC StandardExchangeable Cations with pre-treatmentED0081250.005.00✓NEPM 2013 B3 & ALS QC StandardPer - and Polyfluoroalkyl Substances (PFAS) by LCMSMSEP231X2355.715.00✓NEPM 2013 B3 & ALS QC StandardTotal Metals by ICP-AESEG00572258.005.00✓NEPM 2013 B3 & ALS QC StandardTotal Organic CarbonEP0032258.005.00✓NEPM 2013 B3 & ALS QC StandardMatrix Spikes (MS)Per - and Polyfluoroalkyl Substances (PFAS) by LCMSMSEP231X2355.715.00✓NEPM 2013 B3 & ALS QC StandardMatrix Spikes (MS)Per - and Polyfluoroalkyl Substances (PFAS) by LCMSMSEP231X2355.715.00✓NEPM 2013 B3 & ALS QC StandardTotal Metals by ICP-AESEG00570250.005.00✓NEPM 2013 B3 & ALS QC StandardCallty Control Sample TypeCourtKerlanderKerlanderKerlanderKerlanderCallty Control Sample TypeOcRetired 'ActualExoectedEvaluation✓Quality Control SpecificationAnalytical MethodsMethodOCReourtActualEvaluation✓NEPM 2013 B3 & ALS QC StandardAnalytical Methods <t< td=""><td>Method Blanks (MB)</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Method Blanks (MB)                                   |           |    |         |           |                   |                 |                                                                                          |
| Exchangeable Cations on Alkaline SoilsED0001205.005.00 $\checkmark$ NEPM 2013 B3 & ALS QC StandardExchangeable Cations with pre-treatmentED0081250.005.00 $\checkmark$ NEPM 2013 B3 & ALS QC StandardPer - and Polyfluoroalkyl Substances (PFAS) by LCMSMSEP231X2355.715.00 $\checkmark$ NEPM 2013 B3 & ALS QC StandardTotal Metals by ICP-AESEG005T2258.005.00 $\checkmark$ NEPM 2013 B3 & ALS QC StandardTotal Organic CarbonEP0032258.005.00 $\checkmark$ NEPM 2013 B3 & ALS QC StandardMatrix Spikes (MS)Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMSEP231X2355.715.00 $\checkmark$ NEPM 2013 B3 & ALS QC StandardMatrix Spikes (MS)Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMSEP231X2355.715.00 $\checkmark$ NEPM 2013 B3 & ALS QC StandardTotal Metals by ICP-AESPer- and Polyfluoroalkyl Substances (PFAS) by LCMSMSEP231X2355.715.00 $\checkmark$ NEPM 2013 B3 & ALS QC StandardMatrix WATERCuality Cortrol Sample TypeAnalytical MethodsMethodQCReaularRate (%)Quality Control SpecificationAnalytical MethodsMethodQCReaularActualExpecteEvaluationLaboratory Duplicates (DUP)ED037-P22010.0010.00NEPM 2013 B3 & ALS QC Standard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Cations - soluble by ICP-AES                         | ED093S    | 2  | 25      | 8.00      | 5.00              | ✓               | NEPM 2013 B3 & ALS QC Standard                                                           |
| Exchangeable Cations with pre-treatmentED0081250.005.00✓NEPM 2013 B3 & ALS QC StandardPer- and Polyfluoroalkyl Substances (PFAS) by LCMSMSEP231X2355.715.00✓NEPM 2013 B3 & ALS QC StandardTotal Metals by ICP-AESEG005T2258.005.00✓NEPM 2013 B3 & ALS QC StandardTotal Organic CarbonEP0032258.005.00✓NEPM 2013 B3 & ALS QC StandardMatrix Spikes (MS)Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMSEP231X2355.715.00✓NEPM 2013 B3 & ALS QC StandardMatrix Spikes (MS)Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMSEP231X2355.715.00✓NEPM 2013 B3 & ALS QC StandardTotal Metals by ICP-AESEG005T0250.005.00✓NEPM 2013 B3 & ALS QC StandardAnalytical MethodsMethodQCReaularActualExpectedEvaluation ; ✓ = Quality Control frequency within specificationLaboratory Duplicates (DUP)ActualED037-P22010.0010.00✓NEPM 2013 B3 & ALS QC Standard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Exchangeable Cations                                 | ED007     | 1  | 5       | 20.00     | 5.00              | ✓               | NEPM 2013 B3 & ALS QC Standard                                                           |
| Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS       EP231X       2       35       5.71       5.00       ✓       NEPM 2013 B3 & ALS QC Standard         Total Metals by ICP-AES       EG005T       2       25       8.00       5.00       ✓       NEPM 2013 B3 & ALS QC Standard         Total Organic Carbon       EP003       2       25       8.00       5.00       ✓       NEPM 2013 B3 & ALS QC Standard         Matrix Spikes (MS)       EP231X       2       35       5.71       5.00       ✓       NEPM 2013 B3 & ALS QC Standard         Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS       EP231X       2       35       5.71       5.00       ✓       NEPM 2013 B3 & ALS QC Standard         Matrix Spikes (MS)       EP231X       2       35       5.71       5.00       ✓       NEPM 2013 B3 & ALS QC Standard         Total Metals by ICP-AES       EP035       0       25       0.00       5.00       ✓       NEPM 2013 B3 & ALS QC Standard         Matrix: WATER       Evaluation: × = Quality Control frequency within specification ; × = Quality Control frequency within specification ; × = Quality Control Specification ; × = Quality Control Specification         Quality Control Sample Type       Method       QC       Reaular       Actual       Expected       Evaluation       Quality Control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Exchangeable Cations on Alkaline Soils               | ED006     | 1  | 20      | 5.00      | 5.00              | ✓               | NEPM 2013 B3 & ALS QC Standard                                                           |
| Total Metals by ICP-AESEG005T2258.005.00✓NEPM 2013 B3 & ALS QC StandardTotal Organic CarbonEP0032258.005.00✓NEPM 2013 B3 & ALS QC StandardMatrix Spikes (MS)Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMSEP231X2355.715.00✓NEPM 2013 B3 & ALS QC StandardTotal Metals by ICP-AESEC005T0250.005.00✓NEPM 2013 B3 & ALS QC StandardAtrix: WATEREc005T0250.005.00✓NEPM 2013 B3 & ALS QC StandardQuality Control Sample TypeCountCountRate (%)Quality Control Specification ; ✓ = Quality Control frequency within specificationAnalytical MethodsMethodQCReaularActualExpectedEvaluationLaboratory Duplicates (DUP)ED037-P22010.0010.00✓NEPM 2013 B3 & ALS QC Standard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Exchangeable Cations with pre-treatment              | ED008     | 1  | 2       | 50.00     | 5.00              | ✓               | NEPM 2013 B3 & ALS QC Standard                                                           |
| Total Organic CarbonE CountS.00S.00MEPM 2013 B3 & ALS QC StandardMatrix Spikes (MS)Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMSEP231X2355.715.00✓NEPM 2013 B3 & ALS QC StandardTotal Metals by ICP-AESEG005T0250.005.00 $\chi$ NEPM 2013 B3 & ALS QC StandardMatrix: WATEREvaluation: $\star$ = Quality Control frequency not within specification ; $\checkmark$ = Quality Control frequency within specificationQuality Control Sample TypeCountRate (%)Quality Control SpecificationAnalytical MethodsMethodQCReaularActualExpectedEvaluationLaboratory Duplicates (DUP)ED037-P22010.0010.00 $\checkmark$ NEPM 2013 B3 & ALS QC Standard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS | EP231X    | 2  | 35      | 5.71      | 5.00              | ✓               | NEPM 2013 B3 & ALS QC Standard                                                           |
| Matrix Spikes (MS)Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMSEP231X235 $5.71$ $5.00$ $\checkmark$ NEPM 2013 B3 & ALS QC StandardTotal Metals by ICP-AESEG005T025 $0.00$ $5.00$ $\bigstar$ NEPM 2013 B3 & ALS QC StandardMatrix: WATERCountRate (%)Quality Control Sample TypeAnalytical MethodsMethodQCReaularActualExpectedEvaluationLaboratory Duplicates (DUP)Alkalinity by PC TitratorED037-P22010.0010.00 $\checkmark$ NEPM 2013 B3 & ALS QC Standard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Total Metals by ICP-AES                              | EG005T    | 2  | 25      | 8.00      | 5.00              | ✓               | NEPM 2013 B3 & ALS QC Standard                                                           |
| Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS       EP231X       2       35       5.71       5.00       ✓       NEPM 2013 B3 & ALS QC Standard         Total Metals by ICP-AES       0       25       0.00       5.00       ¥       NEPM 2013 B3 & ALS QC Standard         Matrix: WATER       Evaluation: ★ = Quality Control frequency not within specification ; ✓ = Quality Control frequency within specification ; ✓ = Quality Control Specifica                                                                                                                                                                                              | Total Organic Carbon                                 | EP003     | 2  | 25      | 8.00      | 5.00              | ✓               | NEPM 2013 B3 & ALS QC Standard                                                           |
| Total Metals by ICP-AES       EG005T       0       25       0.00       5.00       ¥       NEPM 2013 B3 & ALS QC Standard         Matrix: WATER       Evaluation: ★ = Quality Control frequency not within specification ; ✓ = Quality Control frequency within specification ; ✓ = Quality Control Specification ; ✓ = Quality                                                                                                   | Matrix Spikes (MS)                                   |           |    |         |           |                   |                 |                                                                                          |
| Matrix: WATER       Evaluation: ★ = Quality Control frequency not within specification ; ✓ = Quality Control frequency within specification ; ✓ = Quality Control Specification ; ✓ = Quality Cont         | Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS | EP231X    | 2  | 35      | 5.71      | 5.00              | ✓               | NEPM 2013 B3 & ALS QC Standard                                                           |
| Quality Control Sample Type       Count       Rate (%)       Quality Control Specification         Analytical Methods       Method       QC       Reaular       Actual       Expected       Evaluation         Laboratory Duplicates (DUP)       ED037-P       2       20       10.00       10.00       ✓       NEPM 2013 B3 & ALS QC Standard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Total Metals by ICP-AES                              | EG005T    | 0  | 25      | 0.00      | 5.00              | x               | NEPM 2013 B3 & ALS QC Standard                                                           |
| Quality Control Sample Type       Count       Rate (%)       Quality Control Specification         Analytical Methods       Method       QC       Reaular       Actual       Expected       Evaluation         Laboratory Duplicates (DUP)       ED037-P       2       20       10.00       10.00       ✓       NEPM 2013 B3 & ALS QC Standard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Matrix: WATER                                        |           |    |         | Evaluatio | n: × = Quality Co | ntrol frequency | not within specification ; $\checkmark$ = Quality Control frequency within specificatior |
| Analytical Methods       Method       QC       Reaular       Actual       Expected       Evaluation         Laboratory Duplicates (DUP)         Alkalinity by PC Titrator       ED037-P       2       20       10.00       10.00       ✓       NEPM 2013 B3 & ALS QC Standard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Quality Control Sample Type                          |           | С  | count   |           |                   |                 |                                                                                          |
| Alkalinity by PC Titrator ED037-P 2 20 10.00 10.00 🗸 NEPM 2013 B3 & ALS QC Standard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Analytical Methods                                   | Method    |    |         | Actual    | 1                 | Evaluation      |                                                                                          |
| Alkalinity by PC Titrator ED037-P 2 20 10.00 10.00 🗸 NEPM 2013 B3 & ALS QC Standard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Laboratory Duplicates (DUP)                          |           |    |         |           |                   |                 |                                                                                          |
| Chloride by Discrete Analyser ED045G 2 20 10.00 10.00 🖌 NEPM 2013 B3 & ALS QC Standard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Alkalinity by PC Titrator                            | ED037-P   | 2  | 20      | 10.00     | 10.00             | 1               | NEPM 2013 B3 & ALS QC Standard                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Chloride by Discrete Analyser                        | ED045G    | 2  | 20      | 10.00     | 10.00             | ✓               | NEPM 2013 B3 & ALS QC Standard                                                           |

| Page       | : 12 of 14    |
|------------|---------------|
| Work Order | : EM1614608   |
| Client     | : GHD PTY LTD |
| Project    | 212558305     |



| Matrix: WATER                                          |         |    |         | Evaluatio | n: × = Quality Co | ontrol frequency | not within specification ; $\checkmark$ = Quality Control frequency within specification |
|--------------------------------------------------------|---------|----|---------|-----------|-------------------|------------------|------------------------------------------------------------------------------------------|
| Quality Control Sample Type                            |         | C  | ount    |           | Rate (%)          |                  | Quality Control Specification                                                            |
| Analytical Methods                                     | Method  | OC | Reaular | Actual    | Expected          | Evaluation       |                                                                                          |
| Laboratory Duplicates (DUP) - Continued                |         |    |         |           |                   |                  |                                                                                          |
| pH by PC Titrator                                      | EA005-P | 2  | 20      | 10.00     | 10.00             | ✓                | NEPM 2013 B3 & ALS QC Standard                                                           |
| Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser | ED041G  | 2  | 20      | 10.00     | 10.00             | ✓                | NEPM 2013 B3 & ALS QC Standard                                                           |
| Total Dissolved Solids (High Level)                    | EA015H  | 2  | 20      | 10.00     | 10.00             | ✓                | NEPM 2013 B3 & ALS QC Standard                                                           |
| Laboratory Control Samples (LCS)                       |         |    |         |           |                   |                  |                                                                                          |
| Alkalinity by PC Titrator                              | ED037-P | 1  | 20      | 5.00      | 5.00              | ✓                | NEPM 2013 B3 & ALS QC Standard                                                           |
| Chloride by Discrete Analyser                          | ED045G  | 2  | 20      | 10.00     | 10.00             | ✓                | NEPM 2013 B3 & ALS QC Standard                                                           |
| Major Cations - Dissolved                              | ED093F  | 1  | 17      | 5.88      | 5.00              | ✓                | NEPM 2013 B3 & ALS QC Standard                                                           |
| Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS   | EP231X  | 1  | 19      | 5.26      | 5.00              | ✓                | NEPM 2013 B3 & ALS QC Standard                                                           |
| Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser | ED041G  | 2  | 20      | 10.00     | 10.00             | ✓                | NEPM 2013 B3 & ALS QC Standard                                                           |
| Total Dissolved Solids (High Level)                    | EA015H  | 2  | 20      | 10.00     | 10.00             | ✓                | NEPM 2013 B3 & ALS QC Standard                                                           |
| Method Blanks (MB)                                     |         |    |         |           |                   |                  |                                                                                          |
| Chloride by Discrete Analyser                          | ED045G  | 1  | 20      | 5.00      | 5.00              | ✓                | NEPM 2013 B3 & ALS QC Standard                                                           |
| Major Cations - Dissolved                              | ED093F  | 1  | 17      | 5.88      | 5.00              | ✓                | NEPM 2013 B3 & ALS QC Standard                                                           |
| Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS   | EP231X  | 1  | 19      | 5.26      | 5.00              | ✓                | NEPM 2013 B3 & ALS QC Standard                                                           |
| Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser | ED041G  | 1  | 20      | 5.00      | 5.00              | ✓                | NEPM 2013 B3 & ALS QC Standard                                                           |
| Total Dissolved Solids (High Level)                    | EA015H  | 1  | 20      | 5.00      | 5.00              | ✓                | NEPM 2013 B3 & ALS QC Standard                                                           |
| Matrix Spikes (MS)                                     |         |    |         |           |                   |                  |                                                                                          |
| Chloride by Discrete Analyser                          | ED045G  | 1  | 20      | 5.00      | 5.00              | ✓                | NEPM 2013 B3 & ALS QC Standard                                                           |
| Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS   | EP231X  | 1  | 19      | 5.26      | 5.00              | 1                | NEPM 2013 B3 & ALS QC Standard                                                           |
| Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser | ED041G  | 1  | 20      | 5.00      | 5.00              | ✓                | NEPM 2013 B3 & ALS QC Standard                                                           |

| Page       | : 13 of 14    |
|------------|---------------|
| Work Order | : EM1614608   |
| Client     | : GHD PTY LTD |
| Project    | 212558305     |



### **Brief Method Summaries**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

| Analytical Methods                                   | Method    | Matrix | Method Descriptions                                                                                                                                                                                                                                                                                                                                                                                    |
|------------------------------------------------------|-----------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Moisture Content                                     | EA055-103 | SOIL   | In house: A gravimetric procedure based on weight loss over a 12 hour drying period at 103-105 degrees C. This method is compliant with NEPM (2013) Schedule B(3) Section 7.1 and Table 1 (14 day holding time).                                                                                                                                                                                       |
| Particle Size Analysis by Hydrometer                 | EA150H    | SOIL   | Particle Size Analysis by Hydrometer according to AS1289.3.6.3 - 2003                                                                                                                                                                                                                                                                                                                                  |
| Soil Particle Density                                | * EA152   | SOIL   | Soil Particle Density by AS 1289.3.5.1-2006 : Methods of testing soils for engineering purposes - Soil classification tests - Determination of the soil particle density of a soil - Standard method                                                                                                                                                                                                   |
| Exchangeable Cations on Alkaline Soils               | ED006     | SOIL   | In house: Referenced to Soil Survey Test Method C5. Soluble salts are removed from the sample prior to analysis. Cations are exchanged from the sample by contact with alcoholic ammonium chloride at pH 8.5. They are then quantitated in the final solution by ICPAES and reported as meq/100g of original soil.                                                                                     |
| Exchangeable Cations                                 | ED007     | SOIL   | In house: Referenced to Rayment & Lyons (2011) Method 15A1. Cations are exchanged from the sample by contact with Ammonium Chloride. They are then quantitated in the final solution by ICPAES and reported as meq/100g of original soil. This method is compliant with NEPM (2013) Schedule B(3) (Method 301)                                                                                         |
| Exchangeable Cations with<br>pre-treatment           | ED008     | SOIL   | In house: Referenced to Rayment & Higginson (2011) Method 15A2. Soluble salts are removed from the sample prior to analysis. Cations are exchanged from the sample by contact with Ammonium Chloride. They are then quantitated in the final solution by ICPAES and reported as meq/100g of original soil. This method is compliant with NEPM (2013) Schedule B(3) (Method 301)                        |
| Major Anions - Soluble                               | ED040S    | SOIL   | In house: Soluble Anions are determined off a 1:5 soil / water extract by ICPAES.                                                                                                                                                                                                                                                                                                                      |
| Cations - soluble by ICP-AES                         | ED093S    | SOIL   | In house: Referenced to APHA 3120; USEPA SW 846 - 6010 (ICPAES) Water extracts of the soil are analyzed for major cations by ICPAES. The ICPAES technique ionises samples in a plasma, emitting a characteristic spectrum based on metals present. Intensities at selected wavelengths are compared against those of matrix matched standards. This method is compliant with NEPM (2013) Schedule B(3) |
| Total Metals by ICP-AES                              | EG005T    | SOIL   | In house: Referenced to APHA 3120; USEPA SW 846 - 6010. Metals are determined following an appropriate acid digestion of the soil. The ICPAES technique ionises samples in a plasma, emitting a characteristic spectrum based on metals present. Intensities at selected wavelengths are compared against those of matrix matched standards. This method is compliant with NEPM (2013) Schedule B(3)   |
| Total Organic Carbon                                 | EP003     | SOIL   | In house C-IR17. Dried and pulverised sample is reacted with acid to remove inorganic Carbonates, then combusted in a LECO furnace in the presence of strong oxidants / catalysts. The evolved (Organic) Carbon (as CO2) is automatically measured by infra-red detector.                                                                                                                              |
| Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS | EP231X    | SOIL   | In-House. A portion of soil is extracted with MTBE. The extract is taken to dryness, made up in mobile phase.<br>Analysis is by LC/MSMS, ESI Negative Mode using MRM. PFOS is quantified using a certified, traceable standard consisting of linear and branched PFOS isomers.                                                                                                                         |
| pH by PC Titrator                                    | EA005-P   | WATER  | In house: Referenced to APHA 4500 H+ B. This procedure determines pH of water samples by automated ISE. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                        |
| Total Dissolved Solids (High Level)                  | EA015H    | WATER  | In house: Referenced to APHA 2540C. A gravimetric procedure that determines the amount of `filterable` residue in an aqueous sample. A well-mixed sample is filtered through a glass fibre filter (1.2um). The filtrate is evaporated to dryness and dried to constant weight at 180+/-5C. This method is compliant with NEPM (2013) Schedule B(3)                                                     |



| Analytical Methods                                            | Method     | Matrix | Method Descriptions                                                                                                                                                                                                                                                                                                                                                                                                                     |
|---------------------------------------------------------------|------------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Alkalinity by PC Titrator                                     | ED037-P    | WATER  | In house: Referenced to APHA 2320 B This procedure determines alkalinity by automated measurement (e.g. PC Titrate) using pH 4.5 for indicating the total alkalinity end-point. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                 |
| Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser        | ED041G     | WATER  | In house: Referenced to APHA 4500-SO4. Dissolved sulfate is determined in a 0.45um filtered sample. Sulfate ions are converted to a barium sulfate suspension in an acetic acid medium with barium chloride. Light absorbance of the BaSO4 suspension is measured by a photometer and the SO4-2 concentration is determined by comparison of the reading with a standard curve. This method is compliant with NEPM (2013) Schedule B(3) |
| Chloride by Discrete Analyser                                 | ED045G     | WATER  | In house: Referenced to APHA 4500 CI - G. The thiocyanate ion is liberated from mercuric thiocyanate through sequestration of mercury by the chloride ion to form non-ionised mercuric chloride in the presence of ferric ions the librated thiocynate forms highly-coloured ferric thiocynate which is measured at 480 nm APHA 21st edition seal method 2 017-1-L april 2003                                                           |
| Major Cations - Dissolved                                     | ED093F     | WATER  | In house: Referenced to APHA 3120 and 3125; USEPA SW 846 - 6010 and 6020; Cations are determined by either ICP-AES or ICP-MS techniques. This method is compliant with NEPM (2013) Schedule B(3) Sodium Adsorption Ratio is calculated from Ca, Mg and Na which determined by ALS in house method QWI-EN/ED093F. This method is compliant with NEPM (2013) Schedule B(3)                                                                |
| Ionic Balance by PCT DA and Turbi SO4                         | EN055 - PG | WATER  | Hardness parameters are calculated based on APHA 2340 B. This method is compliant with NEPM (2013)         Schedule B(3)         In house: Referenced to APHA 1030F. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                            |
| DA<br>Per- and Polyfluoroalkyl Substances<br>(PFAS) by LCMSMS | EP231X     | WATER  | In house: Direct injection analysis of fresh waters after dilution (1:1) with methanol. Analysis by LC-Electrospray-MS-MS, Negative Mode using MRM. PFOS is quantified using a certified, traceable standard consisting of linear and branched PFOS isomers.                                                                                                                                                                            |
| Preparation Methods                                           | Method     | Matrix | Method Descriptions                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Exchangeable Cations Preparation<br>Method (Alkaline Soils)   | ED006PR    | SOIL   | In house: Referenced to Rayment and Lyons 2011 method 15C1.                                                                                                                                                                                                                                                                                                                                                                             |
| Exchangeable Cations Preparation<br>Method                    | ED007PR    | SOIL   | In house: Referenced to Rayment & Higginson (1992) method 15A1. A 1M NH4CI extraction by end over end tumbling at a ratio of 1:20. There is no pretreatment for soluble salts. Extracts can be run by ICP for cations.                                                                                                                                                                                                                  |
| 1:5 solid / water leach for soluble<br>analytes               | EN34       | SOIL   | 10 g of soil is mixed with 50 mL of distilled water and tumbled end over end for 1 hour. Water soluble salts are leached from the soil by the continuous suspension. Samples are settled and the water filtered off for analysis.                                                                                                                                                                                                       |
| Hot Block Digest for metals in soils sediments and sludges    | EN69       | SOIL   | In house: Referenced to USEPA 200.2. Hot Block Acid Digestion 1.0g of sample is heated with Nitric and Hydrochloric acids, then cooled. Peroxide is added and samples heated and cooled again before being filtered and bulked to volume for analysis. Digest is appropriate for determination of selected metals in sludge, sediments, and soils. This method is compliant with NEPM (2013) Schedule B(3) (Method 202)                 |
| Sample Extraction for PFAS                                    | EP231-PR   | SOIL   | In house                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Dry and Pulverise (up to 100g)                                | GEO30      | SOIL   | #                                                                                                                                                                                                                                                                                                                                                                                                                                       |

| CHAIN OF CUSTODY RECORD        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Page of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GHD                            | Durne 3000<br>Fax: 613 8687 8111 STANDARD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | COURIER AND LABORATORY INSTRUCTIONS:<br>Sign white court precision and releases as samples.<br>Common and such a the I abreming whitease                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Project                        | COURINEY WINE Address: ALS SPRINGNALE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | compressing to occurrence to the accuration of the compressing of samples, the laboratory contact<br>In received samples, the laboratory contact<br>In receive the contact of t |
| UQUN PFAS                      | INVESTIGATION Laboratory Contact: CHIRLEY LE CORNU<br>IGHID Contact<br>GATI Contact<br>GATI CONTACT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | to significant evolution investment of analyses please return white<br>On comprision of analyses please return white<br>copy with results.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Rion                           | NEJ Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Plnk copy is returned to the sampler once the<br>counter has signed for the samples.<br>E-mail results to the GHD Project Manager<br>and GHD Contact with the GHD Job Number in the e-mail subject line.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Sample I.D.                    | econic<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>second<br>se | Note email format: firstname Jastname@ghd.com<br>Results to be provided in ESDAT compatible format                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                | Ample and a second a seco                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SAMPLE COMMENNS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1 MMOI                         | άw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 2 muor                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 2 MWOS                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 4 FD01                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| × #(0)                         | EM1700781                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | PLS FORWARD FSOI TO MGI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ,                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| -                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                | Initials NPDate #711                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| TOTAL NUMBER OF SAMPLES        | ES 6 GENERAL COMMENNS & PERS EXTENDED SUITE (AUS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| LIL SAMPLES RSKY CHELED? Y (9) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| C DO LOD THE DUTY              | Date/Time Received Date/Time Relinquished                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| SAMPLER                        | 1 ci/io/the sanin.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | quis audit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| GHD SERVICE CENTRE             | 1WICK 25/01/17 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10:25 un 25701/2017.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| COURIER<br>• ABORATORY         | 1/10/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |



### **CERTIFICATE OF ANALYSIS**

| Work Order              | : EM1700781                              | Page                    | : 1 of 8                                     |                                                 |
|-------------------------|------------------------------------------|-------------------------|----------------------------------------------|-------------------------------------------------|
| Client                  | : GHD PTY LTD                            | Laboratory              | Environmental Division Melbourne             |                                                 |
| Contact                 | : MR BEN ANDERSON                        | Contact                 | : Shirley LeCornu                            |                                                 |
| Address                 | ELEVEL 8, 180 LONSDALE ST                | Address                 | : 4 Westall Rd Springvale VIC Australia 3171 |                                                 |
|                         | MELBOURNE VIC, AUSTRALIA 3001            |                         |                                              |                                                 |
| Telephone               | : +61 07 5413 8161                       | Telephone               | : +61-3-8549 9630                            |                                                 |
| Project                 | : 212558305                              | Date Samples Received   | : 25-Jan-2017 11:20                          |                                                 |
| Order number            | :                                        | Date Analysis Commenced | : 30-Jan-2017                                |                                                 |
| C-O-C number            | :                                        | Issue Date              | : 03-Feb-2017 17:11                          |                                                 |
| Sampler                 | : COURTNEY WINES                         |                         | Hac-MRA                                      | NATA                                            |
| Site                    | : Deniliquin PFAS Investigation          |                         |                                              |                                                 |
| Quote number            | : EN/005/15 VICTORIA (Primary work only) |                         |                                              |                                                 |
| No. of samples received | : 5                                      |                         | Accredite                                    | Accreditation No. 825<br>ed for compliance with |
| No. of samples analysed | : 5                                      |                         | l.                                           | SO/IEC 17025 - Testing                          |

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

### Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

| Signatories    | Position               | Accreditation Category                |
|----------------|------------------------|---------------------------------------|
| Alex Rossi     | Organic Chemist        | Sydney Organics, Smithfield, NSW      |
| Chris Lemaitre | Non-Metals Team Leader | Melbourne Inorganics, Springvale, VIC |

| Page       | : 2 of 8      |
|------------|---------------|
| Work Order | : EM1700781   |
| Client     | : GHD PTY LTD |
| Project    | 212558305     |



### **General Comments**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When no sampling time is provided, the sampling time will default 00:00 on the date of sampling. If no sampling date is provided, the sampling date will be assumed by the laboratory and displayed in brackets without a time component.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key : CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

- TDS by method EA-015 may bias high for EM1700781 #1 due to the presence of fine particulate matter, which may pass through the prescribed GF/C paper.
- Ionic balances were calculated using: major anions chloride, alkalinity and sulfate; and major cations calcium, magnesium, potassium and sodium.
- ED045G: The presence of thiocyanate can positively contribute to the chloride result, thereby may bias results higher than expected. Results should be scrutinised accordingly.

| Page       | : 3 of 8      |
|------------|---------------|
| Work Order | : EM1700781   |
| Client     | : GHD PTY LTD |
| Project    | 212558305     |



| Sub-Matrix: GROUNDWATER<br>(Matrix: WATER) |              | Clie        | ent sample ID  | MW01              | MW02              | MW03              | FD01              |  |
|--------------------------------------------|--------------|-------------|----------------|-------------------|-------------------|-------------------|-------------------|--|
|                                            | CI           | ient sampli | ng date / time | 24-Jan-2017 00:00 | 24-Jan-2017 00:00 | 24-Jan-2017 00:00 | 24-Jan-2017 00:00 |  |
| Compound                                   | CAS Number   | LOR         | Unit           | EM1700781-001     | EM1700781-002     | EM1700781-003     | EM1700781-004     |  |
|                                            |              |             | -              | Result            | Result            | Result            | Result            |  |
| EA005P: pH by PC Titrator                  |              |             |                |                   |                   |                   |                   |  |
| pH Value                                   |              | 0.01        | pH Unit        | 7.77              | 7.80              | 7.71              | 7.79              |  |
| EA015: Total Dissolved Solids dried at     | : 180 ± 5 °C |             |                |                   |                   |                   |                   |  |
| Total Dissolved Solids @180°C              |              | 10          | mg/L           | 1670              | 1150              | 1700              | 1020              |  |
| ED037P: Alkalinity by PC Titrator          |              |             |                |                   |                   |                   |                   |  |
| Hydroxide Alkalinity as CaCO3              | DMO-210-001  | 1           | mg/L           | <1                | <1                | <1                |                   |  |
| Carbonate Alkalinity as CaCO3              | 3812-32-6    | 1           | mg/L           | <1                | <1                | <1                |                   |  |
| Bicarbonate Alkalinity as CaCO3            | 71-52-3      | 1           | mg/L           | 290               | 308               | 186               |                   |  |
| Total Alkalinity as CaCO3                  |              | 1           | mg/L           | 290               | 308               | 186               |                   |  |
| ED041G: Sulfate (Turbidimetric) as SO      | 4 2- by DA   |             |                |                   |                   |                   |                   |  |
| Sulfate as SO4 - Turbidimetric             | 14808-79-8   | 1           | mg/L           | 70                | 60                | 155               |                   |  |
| ED045G: Chloride by Discrete Analyse       |              |             |                |                   |                   |                   |                   |  |
| Chloride                                   | 16887-00-6   | 1           | mg/L           | 448               | 384               | 749               |                   |  |
| ED093F: Dissolved Major Cations            |              |             |                |                   |                   |                   |                   |  |
| Calcium                                    | 7440-70-2    | 1           | mg/L           | 18                | 18                | 38                |                   |  |
| Magnesium                                  | 7439-95-4    | 1           | mg/L           | 24                | 23                | 41                |                   |  |
| Sodium                                     | 7440-23-5    | 1           | mg/L           | 316               | 305               | 420               |                   |  |
| Potassium                                  | 7440-09-7    | 1           | mg/L           | 1                 | 2                 | 9                 |                   |  |
| EN055: Ionic Balance                       |              |             |                |                   |                   |                   |                   |  |
| Total Anions                               |              | 0.01        | meq/L          | 19.9              | 18.2              | 28.1              |                   |  |
| Total Cations                              |              | 0.01        | meq/L          | 16.6              | 16.1              | 23.8              |                   |  |
| Ionic Balance                              |              | 0.01        | %              | 8.88              | 6.19              | 8.30              |                   |  |
| EP231A: Perfluoroalkyl Sulfonic Acids      |              |             |                |                   |                   |                   |                   |  |
| Perfluorobutane sulfonic acid<br>(PFBS)    | 375-73-5     | 0.02        | µg/L           | 0.14              | <0.02             | <0.02             | 0.15              |  |
| Perfluoropentane sulfonic acid<br>(PFPeS)  | 2706-91-4    | 0.02        | µg/L           | 0.08              | <0.02             | <0.02             | 0.08              |  |
| Perfluorohexane sulfonic acid<br>(PFHxS)   | 355-46-4     | 0.02        | µg/L           | 0.24              | <0.02             | <0.02             | 0.26              |  |
| Perfluoroheptane sulfonic acid<br>(PFHpS)  | 375-92-8     | 0.02        | µg/L           | <0.02             | <0.02             | <0.02             | <0.02             |  |
| Perfluorooctane sulfonic acid<br>(PFOS)    | 1763-23-1    | 0.01        | µg/L           | 0.64              | <0.01             | <0.01             | 0.60              |  |
| Perfluorodecane sulfonic acid<br>(PFDS)    | 335-77-3     | 0.02        | µg/L           | <0.02             | <0.02             | <0.02             | <0.02             |  |

| Page       | : 4 of 8      |
|------------|---------------|
| Work Order | : EM1700781   |
| Client     | : GHD PTY LTD |
| Project    | 212558305     |



| Sub-Matrix: GROUNDWATER<br>(Matrix: WATER)                      |             | Clie         | ent sample ID  | MW01              | MW02              | MW03              | FD01              |  |
|-----------------------------------------------------------------|-------------|--------------|----------------|-------------------|-------------------|-------------------|-------------------|--|
|                                                                 | Cl          | ient samplir | ng date / time | 24-Jan-2017 00:00 | 24-Jan-2017 00:00 | 24-Jan-2017 00:00 | 24-Jan-2017 00:00 |  |
| Compound                                                        | CAS Number  | LOR          | Unit           | EM1700781-001     | EM1700781-002     | EM1700781-003     | EM1700781-004     |  |
|                                                                 |             |              | -              | Result            | Result            | Result            | Result            |  |
| P231B: Perfluoroalkyl Carboxylic Aci                            | ids         |              |                |                   |                   |                   |                   |  |
| Perfluorobutanoic acid (PFBA)                                   | 375-22-4    | 0.1          | µg/L           | <0.1              | <0.1              | <0.1              | <0.1              |  |
| Perfluoropentanoic acid (PFPeA)                                 | 2706-90-3   | 0.02         | µg/L           | 0.13              | <0.02             | <0.02             | 0.12              |  |
| Perfluorohexanoic acid (PFHxA)                                  | 307-24-4    | 0.02         | µg/L           | 0.33              | <0.02             | <0.02             | 0.32              |  |
| Perfluoroheptanoic acid (PFHpA)                                 | 375-85-9    | 0.02         | µg/L           | 0.04              | <0.02             | <0.02             | 0.06              |  |
| Perfluorooctanoic acid (PFOA)                                   | 335-67-1    | 0.01         | µg/L           | 0.03              | <0.01             | <0.01             | 0.03              |  |
| Perfluorononanoic acid (PFNA)                                   | 375-95-1    | 0.02         | µg/L           | <0.02             | <0.02             | <0.02             | <0.02             |  |
| Perfluorodecanoic acid (PFDA)                                   | 335-76-2    | 0.02         | µg/L           | <0.02             | <0.02             | <0.02             | <0.02             |  |
| Perfluoroundecanoic acid<br>(PFUnDA)                            | 2058-94-8   | 0.02         | µg/L           | <0.02             | <0.02             | <0.02             | <0.02             |  |
| Perfluorododecanoic acid<br>(PFDoDA)                            | 307-55-1    | 0.02         | µg/L           | <0.02             | <0.02             | <0.02             | <0.02             |  |
| Perfluorotridecanoic acid<br>(PFTrDA)                           | 72629-94-8  | 0.02         | µg/L           | <0.02             | <0.02             | <0.02             | <0.02             |  |
| Perfluorotetradecanoic acid<br>(PFTeDA)                         | 376-06-7    | 0.05         | µg/L           | <0.05             | <0.05             | <0.05             | <0.05             |  |
| P231C: Perfluoroalkyl Sulfonamides                              |             |              |                |                   |                   |                   |                   |  |
| Perfluorooctane sulfonamide<br>(FOSA)                           | 754-91-6    | 0.02         | µg/L           | <0.02             | <0.02             | <0.02             | <0.02             |  |
| N-Methyl perfluorooctane<br>sulfonamide (MeFOSA)                | 31506-32-8  | 0.05         | µg/L           | <0.05             | <0.05             | <0.05             | <0.05             |  |
| N-Ethyl perfluorooctane<br>sulfonamide (EtFOSA)                 | 4151-50-2   | 0.05         | µg/L           | <0.05             | <0.05             | <0.05             | <0.05             |  |
| N-Methyl perfluorooctane<br>sulfonamidoethanol (MeFOSE)         | 2448-09-7   | 0.05         | µg/L           | <0.05             | <0.05             | <0.05             | <0.05             |  |
| N-Ethyl perfluorooctane<br>sulfonamidoethanol (EtFOSE)          | 1691-99-2   | 0.05         | µg/L           | <0.05             | <0.05             | <0.05             | <0.05             |  |
| N-Methyl perfluorooctane<br>sulfonamidoacetic acid<br>(MeFOSAA) | 2355-31-9   | 0.02         | µg/L           | <0.02             | <0.02             | <0.02             | <0.02             |  |
| N-Ethyl perfluorooctane<br>sulfonamidoacetic acid<br>(EtFOSAA)  | 2991-50-6   | 0.02         | µg/L           | <0.02             | <0.02             | <0.02             | <0.02             |  |
| P231D: (n:2) Fluorotelomer Sulfonic                             | Acids       |              |                |                   |                   |                   | 1                 |  |
| 4:2 Fluorotelomer sulfonic acid<br>(4:2 FTS)                    | 757124-72-4 | 0.05         | µg/L           | <0.05             | <0.05             | <0.05             | <0.05             |  |

| Page<br>Work Order | 5 of 8<br>• EM1700781 |
|--------------------|-----------------------|
| Client             | GHD PTY LTD           |
| Project            | 212558305             |



| Sub-Matrix: GROUNDWATER<br>(Matrix: WATER)     |                        | Client sample ID |                | MW01              | MW02              | MW03              | FD01              |  |
|------------------------------------------------|------------------------|------------------|----------------|-------------------|-------------------|-------------------|-------------------|--|
|                                                | Cl                     | ient sampli      | ng date / time | 24-Jan-2017 00:00 | 24-Jan-2017 00:00 | 24-Jan-2017 00:00 | 24-Jan-2017 00:00 |  |
| Compound                                       | CAS Number             | LOR              | Unit           | EM1700781-001     | EM1700781-002     | EM1700781-003     | EM1700781-004     |  |
|                                                |                        |                  |                | Result            | Result            | Result            | Result            |  |
| EP231D: (n:2) Fluorotelomer Sulfor             | nic Acids - Continued  |                  |                |                   |                   |                   |                   |  |
| 6:2 Fluorotelomer sulfonic acid<br>(6:2 FTS)   | 27619-97-2             | 0.05             | µg/L           | <0.05             | <0.05             | <0.05             | <0.05             |  |
| 8:2 Fluorotelomer sulfonic acid<br>(8:2 FTS)   | 39108-34-4             | 0.05             | µg/L           | <0.05             | <0.05             | <0.05             | <0.05             |  |
| 10:2 Fluorotelomer sulfonic acid<br>(10:2 FTS) | 120226-60-0            | 0.05             | µg/L           | <0.05             | <0.05             | <0.05             | <0.05             |  |
| EP231P: PFAS Sums                              |                        |                  |                |                   |                   |                   |                   |  |
| Sum of PFAS                                    |                        | 0.01             | µg/L           | 1.63              | <0.02             | <0.02             | 1.62              |  |
| Sum of PFHxS and PFOS                          | 355-46-4/1763-23-<br>1 | 0.01             | µg/L           | 0.88              | <0.02             | <0.02             | 0.86              |  |
| Sum of PFAS (WA DER List)                      |                        | 0.01             | µg/L           | 1.55              | <0.02             | <0.02             | 1.54              |  |
| EP231S: PFAS Surrogate                         |                        |                  |                |                   |                   |                   |                   |  |
| 13C4-PFOS                                      |                        | 0.02             | %              | 111               | 86.0              | 113               | 110               |  |

| Page       | : 6 of 8      |
|------------|---------------|
| Work Order | : EM1700781   |
| Client     | : GHD PTY LTD |
| Project    | 212558305     |



| Sub-Matrix: WATER<br>(Matrix: WATER)             | Client sample ID |             |                | RB01              | <br> | <br> |
|--------------------------------------------------|------------------|-------------|----------------|-------------------|------|------|
|                                                  | CI               | ient sampli | ng date / time | 24-Jan-2017 00:00 | <br> | <br> |
| Compound                                         | CAS Number       | LOR         | Unit           | EM1700781-005     | <br> | <br> |
|                                                  |                  |             |                | Result            | <br> | <br> |
| EP231A: Perfluoroalkyl Sulfonic Acids            |                  |             |                |                   |      |      |
| Perfluorobutane sulfonic acid                    | 375-73-5         | 0.02        | µg/L           | <0.02             | <br> | <br> |
| (PFBS)                                           |                  |             |                |                   |      |      |
| Perfluoropentane sulfonic acid<br>(PFPeS)        | 2706-91-4        | 0.02        | µg/L           | <0.02             | <br> | <br> |
| Perfluorohexane sulfonic acid<br>(PFHxS)         | 355-46-4         | 0.02        | µg/L           | <0.02             | <br> | <br> |
| Perfluoroheptane sulfonic acid<br>(PFHpS)        | 375-92-8         | 0.02        | µg/L           | <0.02             | <br> | <br> |
| Perfluorooctane sulfonic acid<br>(PFOS)          | 1763-23-1        | 0.01        | µg/L           | <0.01             | <br> | <br> |
| Perfluorodecane sulfonic acid<br>(PFDS)          | 335-77-3         | 0.02        | µg/L           | <0.02             | <br> | <br> |
| EP231B: Perfluoroalkyl Carboxylic Acid           | ds               |             |                |                   |      |      |
| Perfluorobutanoic acid (PFBA)                    | 375-22-4         | 0.1         | µg/L           | <0.1              | <br> | <br> |
| Perfluoropentanoic acid (PFPeA)                  | 2706-90-3        | 0.02        | µg/L           | <0.02             | <br> | <br> |
| Perfluorohexanoic acid (PFHxA)                   | 307-24-4         | 0.02        | µg/L           | <0.02             | <br> | <br> |
| Perfluoroheptanoic acid (PFHpA)                  | 375-85-9         | 0.02        | µg/L           | <0.02             | <br> | <br> |
| Perfluorooctanoic acid (PFOA)                    | 335-67-1         | 0.01        | µg/L           | <0.01             | <br> | <br> |
| Perfluorononanoic acid (PFNA)                    | 375-95-1         | 0.02        | µg/L           | <0.02             | <br> | <br> |
| Perfluorodecanoic acid (PFDA)                    | 335-76-2         | 0.02        | µg/L           | <0.02             | <br> | <br> |
| Perfluoroundecanoic acid<br>(PFUnDA)             | 2058-94-8        | 0.02        | µg/L           | <0.02             | <br> | <br> |
| Perfluorododecanoic acid<br>(PFDoDA)             | 307-55-1         | 0.02        | µg/L           | <0.02             | <br> | <br> |
| Perfluorotridecanoic acid<br>(PFTrDA)            | 72629-94-8       | 0.02        | µg/L           | <0.02             | <br> | <br> |
| Perfluorotetradecanoic acid<br>(PFTeDA)          | 376-06-7         | 0.05        | µg/L           | <0.05             | <br> | <br> |
| EP231C: Perfluoroalkyl Sulfonamides              |                  |             |                |                   |      |      |
| Perfluorooctane sulfonamide<br>(FOSA)            | 754-91-6         | 0.02        | µg/L           | <0.02             | <br> | <br> |
| N-Methyl perfluorooctane<br>sulfonamide (MeFOSA) | 31506-32-8       | 0.05        | µg/L           | <0.05             | <br> | <br> |
| N-Ethyl perfluorooctane<br>sulfonamide (EtFOSA)  | 4151-50-2        | 0.05        | µg/L           | <0.05             | <br> | <br> |

| Page       | : 7 of 8      |
|------------|---------------|
| Work Order | : EM1700781   |
| Client     | : GHD PTY LTD |
| Project    | 212558305     |



| Sub-Matrix: WATER<br>(Matrix: WATER)                            | Client sample ID       |              |                 | RB01              | <br> | <br> |
|-----------------------------------------------------------------|------------------------|--------------|-----------------|-------------------|------|------|
|                                                                 | Cl                     | lient sampli | ing date / time | 24-Jan-2017 00:00 | <br> | <br> |
| Compound                                                        | CAS Number             | LOR          | Unit            | EM1700781-005     | <br> | <br> |
|                                                                 |                        |              |                 | Result            | <br> | <br> |
| EP231C: Perfluoroalkyl Sulfonamid                               | es - Continued         |              |                 |                   |      |      |
| N-Methyl perfluorooctane<br>sulfonamidoethanol (MeFOSE)         | 2448-09-7              | 0.05         | µg/L            | <0.05             | <br> | <br> |
| N-Ethyl perfluorooctane<br>sulfonamidoethanol (EtFOSE)          | 1691-99-2              | 0.05         | µg/L            | <0.05             | <br> | <br> |
| N-Methyl perfluorooctane<br>sulfonamidoacetic acid<br>(MeFOSAA) | 2355-31-9              | 0.02         | µg/L            | <0.02             | <br> | <br> |
| N-Ethyl perfluorooctane<br>sulfonamidoacetic acid<br>(EtFOSAA)  | 2991-50-6              | 0.02         | µg/L            | <0.02             | <br> | <br> |
| EP231D: (n:2) Fluorotelomer Sulfor                              | nic Acids              |              |                 |                   |      |      |
| 4:2 Fluorotelomer sulfonic acid<br>(4:2 FTS)                    | 757124-72-4            | 0.05         | µg/L            | <0.05             | <br> | <br> |
| 6:2 Fluorotelomer sulfonic acid<br>(6:2 FTS)                    | 27619-97-2             | 0.05         | µg/L            | <0.05             | <br> | <br> |
| 8:2 Fluorotelomer sulfonic acid<br>(8:2 FTS)                    | 39108-34-4             | 0.05         | µg/L            | <0.05             | <br> | <br> |
| 10:2 Fluorotelomer sulfonic acid<br>(10:2 FTS)                  | 120226-60-0            | 0.05         | µg/L            | <0.05             | <br> | <br> |
| EP231P: PFAS Sums                                               |                        |              |                 |                   |      |      |
| Sum of PFAS                                                     |                        | 0.01         | µg/L            | <0.02             | <br> | <br> |
| Sum of PFHxS and PFOS                                           | 355-46-4/1763-23-<br>1 | 0.01         | µg/L            | <0.02             | <br> | <br> |
| Sum of PFAS (WA DER List)                                       |                        | 0.01         | µg/L            | <0.02             | <br> | <br> |
| EP231S: PFAS Surrogate                                          |                        |              |                 |                   |      |      |
| 13C4-PFOS                                                       |                        | 0.02         | %               | 92.0              | <br> | <br> |

| Page       | : 8 of 8      |
|------------|---------------|
| Work Order | : EM1700781   |
| Client     | : GHD PTY LTD |
| Project    | 212558305     |



### Surrogate Control Limits

| Sub-Matrix: GROUNDWATER | Recovery Limits (%) |          |            |
|-------------------------|---------------------|----------|------------|
| Compound                | CAS Number          | Low      | High       |
| EP231S: PFAS Surrogate  |                     |          |            |
| 13C4-PFOS               |                     | 60       | 130        |
| Sub-Matrix: WATER       |                     | Recovery | Limits (%) |
| Compound                | CAS Number          | Low      | High       |
| EP231S: PFAS Surrogate  |                     |          |            |
| 13C4-PFOS               |                     | 60       | 130        |



| QA/QC Compliance Assessment to assist with Quality Review |                                 |                         |                                    |  |  |
|-----------------------------------------------------------|---------------------------------|-------------------------|------------------------------------|--|--|
| Work Order                                                | : EM1700781                     | Page                    | : 1 of 6                           |  |  |
| Client                                                    |                                 | Laboratory              | : Environmental Division Melbourne |  |  |
| Contact                                                   | : MR BEN ANDERSON               | Telephone               | : +61-3-8549 9630                  |  |  |
| Project                                                   | : 212558305                     | Date Samples Received   | : 25-Jan-2017                      |  |  |
| Site                                                      | : Deniliquin PFAS Investigation | Issue Date              | : 03-Feb-2017                      |  |  |
| Sampler                                                   | COURTNEY WINES                  | No. of samples received | : 5                                |  |  |
| Order number                                              | :                               | No. of samples analysed | : 5                                |  |  |

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

### **Summary of Outliers**

### **Outliers : Quality Control Samples**

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- <u>NO</u> Duplicate outliers occur.
- <u>NO</u> Laboratory Control outliers occur.
- Matrix Spike outliers exist please see following pages for full details.
- For all regular sample matrices, NO surrogate recovery outliers occur.

### **Outliers : Analysis Holding Time Compliance**

• Analysis Holding Time Outliers exist - please see following pages for full details.

### **Outliers : Frequency of Quality Control Samples**

• NO Quality Control Sample Frequency Outliers exist.

| Page       | : 2 of 6      |
|------------|---------------|
| Work Order | : EM1700781   |
| Client     | : GHD PTY LTD |
| Project    | 212558305     |



### **Outliers : Quality Control Samples**

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

### Matrix: WATER

| Compound Group Name                     | Laboratory Sample ID | Client Sample ID | Analyte                | CAS Number | Data       | Limits | Comment                          |
|-----------------------------------------|----------------------|------------------|------------------------|------------|------------|--------|----------------------------------|
| Matrix Spike (MS) Recoveries            |                      |                  |                        |            |            |        |                                  |
| EP231A: Perfluoroalkyl Sulfonic Acids   | EM1700773001         | Anonymous        | Perfluorobutane        | 375-73-5   | Not        |        | MS recovery not determined,      |
|                                         |                      |                  | sulfonic acid (PFBS)   |            | Determined |        | background level greater than or |
|                                         |                      |                  |                        |            |            |        | equal to 4x spike level.         |
| EP231A: Perfluoroalkyl Sulfonic Acids   | EM1700773001         | Anonymous        | Perfluoropentane       | 2706-91-4  | Not        |        | MS recovery not determined,      |
|                                         |                      |                  | sulfonic acid          |            | Determined |        | background level greater than or |
|                                         |                      |                  | (PFPeS)                |            |            |        | equal to 4x spike level.         |
| EP231A: Perfluoroalkyl Sulfonic Acids   | EM1700773001         | Anonymous        | Perfluorohexane        | 355-46-4   | Not        |        | MS recovery not determined,      |
|                                         |                      |                  | sulfonic acid          |            | Determined |        | background level greater than or |
|                                         |                      |                  | (PFHxS)                |            |            |        | equal to 4x spike level.         |
| EP231A: Perfluoroalkyl Sulfonic Acids   | EM1700773001         | Anonymous        | Perfluorooctane        | 1763-23-1  | Not        |        | MS recovery not determined,      |
|                                         |                      |                  | sulfonic acid (PFOS)   |            | Determined |        | background level greater than or |
|                                         |                      |                  |                        |            |            |        | equal to 4x spike level.         |
| EP231B: Perfluoroalkyl Carboxylic Acids | EM1700773001         | Anonymous        | Perfluoropentanoic     | 2706-90-3  | Not        |        | MS recovery not determined,      |
|                                         |                      |                  | acid (PFPeA)           |            | Determined |        | background level greater than or |
|                                         |                      |                  |                        |            |            |        | equal to 4x spike level.         |
| EP231B: Perfluoroalkyl Carboxylic Acids | EM1700773001         | Anonymous        | Perfluorohexanoic acid | 307-24-4   | Not        |        | MS recovery not determined,      |
|                                         |                      |                  | (PFHxA)                |            | Determined |        | background level greater than or |
|                                         |                      |                  |                        |            |            |        | equal to 4x spike level.         |

### **Outliers : Analysis Holding Time Compliance**

Matrix: WATER

Matrix: WATED

| Method                          |       | E              | traction / Preparation |         |               | Analysis         |         |
|---------------------------------|-------|----------------|------------------------|---------|---------------|------------------|---------|
| Container / Client Sample ID(s) |       | Date extracted | Due for extraction     | Days    | Date analysed | Due for analysis | Days    |
|                                 |       |                |                        | overdue |               |                  | overdue |
| EA005P: pH by PC Titrator       |       |                |                        |         |               |                  |         |
| Clear Plastic Bottle - Natural  |       |                |                        |         |               |                  |         |
| MW01,                           | MW02, |                |                        |         | 30-Jan-2017   | 24-Jan-2017      | 6       |
| MW03,                           | FD01  |                |                        |         |               |                  |         |

### Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

Evaluation:  $\star$  = Holding time breach ;  $\checkmark$  = Within holding time.

|                                 |             |                          |                    | Lvaluation | . • – Holding time |                  | in noiding time. |
|---------------------------------|-------------|--------------------------|--------------------|------------|--------------------|------------------|------------------|
| Method                          | Sample Date | Extraction / Preparation |                    | Analysis   |                    |                  |                  |
| Container / Client Sample ID(s) |             | Date extracted           | Due for extraction | Evaluation | Date analysed      | Due for analysis | Evaluation       |

| Page       | : 3 of 6      |
|------------|---------------|
| Work Order | : EM1700781   |
| Client     | : GHD PTY LTD |
| Project    | 212558305     |



| Matrix: WATER                                              |                |             |                |                        | Evaluation | : × = Holding time | breach ; ✓ = Withi | in holding time |
|------------------------------------------------------------|----------------|-------------|----------------|------------------------|------------|--------------------|--------------------|-----------------|
| Method                                                     |                | Sample Date | Ex             | traction / Preparation |            |                    | Analysis           |                 |
| Container / Client Sample ID(s)                            |                |             | Date extracted | Due for extraction     | Evaluation | Date analysed      | Due for analysis   | Evaluation      |
| EA005P: pH by PC Titrator                                  |                |             |                |                        |            |                    |                    |                 |
| Clear Plastic Bottle - Natural (EA005-P)<br>MW01,<br>MW03, | MW02,<br>FD01  | 24-Jan-2017 |                |                        |            | 30-Jan-2017        | 24-Jan-2017        | ×               |
| EA015: Total Dissolved Solids dried at 180 ± 5 °C          |                |             |                |                        |            |                    |                    |                 |
| Clear Plastic Bottle - Natural (EA015H)<br>FD01            |                | 24-Jan-2017 |                |                        |            | 30-Jan-2017        | 31-Jan-2017        | ✓               |
| Clear Plastic Bottle - Natural (EA015H)<br>MW01,<br>MW03   | MW02,          | 24-Jan-2017 |                |                        |            | 31-Jan-2017        | 31-Jan-2017        | ~               |
| ED037P: Alkalinity by PC Titrator                          |                |             |                |                        |            |                    |                    |                 |
| Clear Plastic Bottle - Natural (ED037-P)<br>MW01,<br>MW03  | MW02,          | 24-Jan-2017 |                |                        |            | 30-Jan-2017        | 07-Feb-2017        | ~               |
| ED041G: Sulfate (Turbidimetric) as SO4 2- by DA            |                |             |                |                        |            |                    |                    |                 |
| Clear Plastic Bottle - Natural (ED041G)<br>MW01,<br>MW03   | MW02,          | 24-Jan-2017 |                |                        |            | 30-Jan-2017        | 21-Feb-2017        | ~               |
| ED045G: Chloride by Discrete Analyser                      |                |             |                |                        |            |                    |                    |                 |
| Clear Plastic Bottle - Natural (ED045G)<br>MW01,<br>MW03   | MW02,          | 24-Jan-2017 |                |                        |            | 30-Jan-2017        | 21-Feb-2017        | ~               |
| ED093F: Dissolved Major Cations                            |                |             |                |                        |            |                    |                    |                 |
| Clear Plastic Bottle - Natural (ED093F)<br>MW01,<br>MW03   | MW02,          | 24-Jan-2017 |                |                        |            | 31-Jan-2017        | 31-Jan-2017        | ✓               |
| EP231A: Perfluoroalkyl Sulfonic Acids                      |                |             |                |                        |            |                    |                    |                 |
| HDPE (no PTFE) (EP231X)<br>MW01,<br>MW03,<br>RB01          | MW02,<br>FD01, | 24-Jan-2017 |                |                        |            | 31-Jan-2017        | 23-Jul-2017        | ~               |
| EP231B: Perfluoroalkyl Carboxylic Acids                    |                |             |                |                        |            |                    |                    | -               |
| HDPE (no PTFE) (EP231X)<br>MW01,<br>MW03,<br>RB01          | MW02,<br>FD01, | 24-Jan-2017 |                |                        |            | 31-Jan-2017        | 23-Jul-2017        | ~               |
| EP231C: Perfluoroalkyl Sulfonamides                        |                |             |                |                        |            |                    |                    |                 |
| HDPE (no PTFE) (EP231X)<br>MW01,<br>MW03,<br>RB01          | MW02,<br>FD01, | 24-Jan-2017 |                |                        |            | 31-Jan-2017        | 23-Jul-2017        | ~               |

| Page       | : 4 of 6      |
|------------|---------------|
| Work Order | : EM1700781   |
| Client     | : GHD PTY LTD |
| Project    | 212558305     |



| Matrix: WATER                                     |                |             |                |                        | Evaluation | : × = Holding time | breach ; 🗸 = Withi | n holding time. |
|---------------------------------------------------|----------------|-------------|----------------|------------------------|------------|--------------------|--------------------|-----------------|
| Method                                            |                | Sample Date | Ex             | traction / Preparation |            |                    | Analysis           |                 |
| Container / Client Sample ID(s)                   |                |             | Date extracted | Due for extraction     | Evaluation | Date analysed      | Due for analysis   | Evaluation      |
| EP231D: (n:2) Fluorotelomer Sulfonic              | Acids          |             |                |                        |            |                    |                    |                 |
| HDPE (no PTFE) (EP231X)<br>MW01,<br>MW03,<br>RB01 | MW02,<br>FD01, | 24-Jan-2017 |                |                        |            | 31-Jan-2017        | 23-Jul-2017        | ~               |
| EP231P: PFAS Sums                                 |                |             |                |                        |            |                    |                    |                 |
| HDPE (no PTFE) (EP231X)<br>MW01,<br>MW03,<br>RB01 | MW02,<br>FD01, | 24-Jan-2017 |                |                        |            | 31-Jan-2017        | 23-Jul-2017        | ~               |

| Page       | : 5 of 6      |
|------------|---------------|
| Work Order | : EM1700781   |
| Client     | : GHD PTY LTD |
| Project    | 212558305     |



### **Quality Control Parameter Frequency Compliance**

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

| Matrix: WATER                                          |         |       |         | Evaluatio | n: × = Quality Co | ntrol frequency | not within specification ; $\checkmark$ = Quality Control frequency within specification |
|--------------------------------------------------------|---------|-------|---------|-----------|-------------------|-----------------|------------------------------------------------------------------------------------------|
| Quality Control Sample Type                            |         | Count |         |           | Rate (%)          |                 | Quality Control Specification                                                            |
| Analytical Methods                                     | Method  | OC    | Reaular | Actual    | Expected          | Evaluation      |                                                                                          |
| Laboratory Duplicates (DUP)                            |         |       |         |           |                   |                 |                                                                                          |
| Alkalinity by PC Titrator                              | ED037-P | 2     | 20      | 10.00     | 10.00             | ✓               | NEPM 2013 B3 & ALS QC Standard                                                           |
| Chloride by Discrete Analyser                          | ED045G  | 2     | 20      | 10.00     | 10.00             | ✓               | NEPM 2013 B3 & ALS QC Standard                                                           |
| Major Cations - Dissolved                              | ED093F  | 2     | 20      | 10.00     | 10.00             | ✓               | NEPM 2013 B3 & ALS QC Standard                                                           |
| Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS   | EP231X  | 2     | 19      | 10.53     | 10.00             | ✓               | NEPM 2013 B3 & ALS QC Standard                                                           |
| pH by PC Titrator                                      | EA005-P | 2     | 20      | 10.00     | 10.00             | ✓               | NEPM 2013 B3 & ALS QC Standard                                                           |
| Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser | ED041G  | 2     | 20      | 10.00     | 10.00             | ✓               | NEPM 2013 B3 & ALS QC Standard                                                           |
| Total Dissolved Solids (High Level)                    | EA015H  | 4     | 36      | 11.11     | 10.00             | ✓               | NEPM 2013 B3 & ALS QC Standard                                                           |
| Laboratory Control Samples (LCS)                       |         |       |         |           |                   |                 |                                                                                          |
| Alkalinity by PC Titrator                              | ED037-P | 1     | 20      | 5.00      | 5.00              | ✓               | NEPM 2013 B3 & ALS QC Standard                                                           |
| Chloride by Discrete Analyser                          | ED045G  | 2     | 20      | 10.00     | 10.00             | ✓               | NEPM 2013 B3 & ALS QC Standard                                                           |
| Major Cations - Dissolved                              | ED093F  | 1     | 20      | 5.00      | 5.00              | 1               | NEPM 2013 B3 & ALS QC Standard                                                           |
| Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS   | EP231X  | 1     | 19      | 5.26      | 5.00              | 1               | NEPM 2013 B3 & ALS QC Standard                                                           |
| Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser | ED041G  | 2     | 20      | 10.00     | 10.00             | ✓               | NEPM 2013 B3 & ALS QC Standard                                                           |
| Total Dissolved Solids (High Level)                    | EA015H  | 4     | 36      | 11.11     | 10.00             | ✓               | NEPM 2013 B3 & ALS QC Standard                                                           |
| Method Blanks (MB)                                     |         |       |         |           |                   |                 |                                                                                          |
| Chloride by Discrete Analyser                          | ED045G  | 1     | 20      | 5.00      | 5.00              | ~               | NEPM 2013 B3 & ALS QC Standard                                                           |
| Major Cations - Dissolved                              | ED093F  | 1     | 20      | 5.00      | 5.00              | ✓               | NEPM 2013 B3 & ALS QC Standard                                                           |
| Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS   | EP231X  | 1     | 19      | 5.26      | 5.00              | ✓               | NEPM 2013 B3 & ALS QC Standard                                                           |
| Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser | ED041G  | 1     | 20      | 5.00      | 5.00              | ~               | NEPM 2013 B3 & ALS QC Standard                                                           |
| Total Dissolved Solids (High Level)                    | EA015H  | 2     | 36      | 5.56      | 5.00              | ✓               | NEPM 2013 B3 & ALS QC Standard                                                           |
| Matrix Spikes (MS)                                     |         |       |         |           |                   |                 |                                                                                          |
| Chloride by Discrete Analyser                          | ED045G  | 1     | 20      | 5.00      | 5.00              | ✓               | NEPM 2013 B3 & ALS QC Standard                                                           |
| Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS   | EP231X  | 1     | 19      | 5.26      | 5.00              | ✓               | NEPM 2013 B3 & ALS QC Standard                                                           |
| Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser | ED041G  | 1     | 20      | 5.00      | 5.00              | ~               | NEPM 2013 B3 & ALS QC Standard                                                           |
|                                                        |         |       |         |           |                   |                 |                                                                                          |

| Page       | : 6 of 6      |
|------------|---------------|
| Work Order | : EM1700781   |
| Client     | : GHD PTY LTD |
| Project    | 212558305     |



### **Brief Method Summaries**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

| Analytical Methods                                        | Method     | Matrix | Method Descriptions                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|-----------------------------------------------------------|------------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| pH by PC Titrator                                         | EA005-P    | WATER  | In house: Referenced to APHA 4500 H+ B. This procedure determines pH of water samples by automated ISE. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                                                         |  |
| Total Dissolved Solids (High Level)                       | EA015H     | WATER  | In house: Referenced to APHA 2540C. A gravimetric procedure that determines the amount of `filterable` residue in an aqueous sample. A well-mixed sample is filtered through a glass fibre filter (1.2um). The filtrate is evaporated to dryness and dried to constant weight at 180+/-5C. This method is compliant with NEPM (2013) Schedule B(3)                                                                                      |  |
| Alkalinity by PC Titrator                                 | ED037-P    | WATER  | In house: Referenced to APHA 2320 B This procedure determines alkalinity by automated measurement (e.g. PC Titrate) using pH 4.5 for indicating the total alkalinity end-point. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                 |  |
| Sulfate (Turbidimetric) as SO4 2- by<br>Discrete Analyser | ED041G     | WATER  | In house: Referenced to APHA 4500-SO4. Dissolved sulfate is determined in a 0.45um filtered sample. Sulfate ions are converted to a barium sulfate suspension in an acetic acid medium with barium chloride. Light absorbance of the BaSO4 suspension is measured by a photometer and the SO4-2 concentration is determined by comparison of the reading with a standard curve. This method is compliant with NEPM (2013) Schedule B(3) |  |
| Chloride by Discrete Analyser                             | ED045G     | WATER  | In house: Referenced to APHA 4500 CI - G.The thiocyanate ion is liberated from mercuric thiocyanate through sequestration of mercury by the chloride ion to form non-ionised mercuric chloride in the presence of ferric ions the librated thiocynate forms highly-coloured ferric thiocynate which is measured at 480 nm APHA 21st edition seal method 2 017-1-L april 2003                                                            |  |
| Major Cations - Dissolved                                 | ED093F     | WATER  |                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| lonic Balance by PCT DA and Turbi SO4<br>DA               | EN055 - PG | WATER  | In house: Referenced to APHA 1030F. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                                                                                                                             |  |
| Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS      | EP231X     | WATER  | In house: Direct injection analysis of fresh waters after dilution (1:1) with methanol. Analysis by LC-Electrospray-MS-MS, Negative Mode using MRM. PFOS is quantified using a certified, traceable standard consisting of linear and branched PFOS isomers.                                                                                                                                                                            |  |

| Fadi Sore                                                                        |                 |  |
|----------------------------------------------------------------------------------|-----------------|--|
| From: Sepan Mahamad                                                              |                 |  |
|                                                                                  | PM              |  |
|                                                                                  |                 |  |
| Cc: Brenda Hong                                                                  |                 |  |
| oject:                                                                           | analysis        |  |
| HI All.                                                                          | [ MW01-0-1      |  |
|                                                                                  | 2 MW01-9.0      |  |
| Client has confirmed that she requires ASLP – DI.                                | } MW02-0-1      |  |
|                                                                                  | 4 MWB-0.1       |  |
|                                                                                  | 5 5601 - 0 · 1  |  |
| Kind regards,                                                                    | 6 S152-0-1      |  |
| Secrete Management                                                               | ٢-٥-٤٥٤٢ (      |  |
| Client Services Officer, Environmental                                           | 8 5003-1-0      |  |
| Sydney                                                                           | A SB04-0-15     |  |
| <b>I</b> +61 2 8784 8555 <b>D</b> +61 2 8784 8534                                | رى كرايح ـ وم⊉  |  |
| <b>E</b> +61 2 8784 8500                                                         | 11 5601         |  |
| ALS sepan.mahamad@alsglobal.com                                                  |                 |  |
| 277-289 Woodpark Road                                                            | ٢٩ ٢ ٢٠٦] ٢٩    |  |
| Smithfield NSW 2164 Australia                                                    | 5504            |  |
| Subscribe 🚵 Training 🔝 💓 🕄 💌                                                     | 10 202<br>502 1 |  |
| EnviroMail <sup>TM</sup> 00 – All EnviroMails in one convenient download.        | rogo            |  |
| Right Solutions • Right Partner<br><u>www.alsglobal.com</u>                      |                 |  |
| From: Sepan Mahamad<br>Sent: Monday, 16 January 2017 7:10 PM                     |                 |  |
| To: Samples Sydney <samples.sydney@alsglobal.com></samples.sydney@alsglobal.com> |                 |  |

н

Rant Arg

Environmental Division Sydney Work Order Reference

Telephone: +61-2-8784 8555

ugy.7

| Cc: Brenda<br>Subject: P                                                | <b>Cc:</b> Brenda Hong <brenda.hong@alsglobal.com><br/><b>Subject:</b> FW: ASLP Deniliquin Additional analysis</brenda.hong@alsglobal.com>                                                                                                         |
|-------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Hi Team,                                                                |                                                                                                                                                                                                                                                    |
| Please pro                                                              | Please process rebatch as per the request below.                                                                                                                                                                                                   |
| Kind regards,                                                           | ds,                                                                                                                                                                                                                                                |
| <b>Sepan Mahamad</b><br>Client Services Of<br>Sydney                    | <b>Sepan Mahamad</b><br>Client Services Officer, Environmental<br>Sydney                                                                                                                                                                           |
|                                                                         | <b>T</b> +61 2 8784 8555 <b>D</b> +61 2 8784 8534<br><b>F</b> +61 2 8784 8500<br><u>sepan.mahamad@alsglobal.com</u><br>277-289 Woodpark Road<br>Smithfield NSW 2164 Australia                                                                      |
| Subscrib                                                                | 🛣 Subscribe 🎪 Training 🛅 💓 🖪 🖸                                                                                                                                                                                                                     |
| EnviroMail™ 00 – Al<br>Right Solutions • Rig<br>www.alsglobal.com       | <b>EnviroMail<sup>™</sup> 00</b> – All EnviroMails in one convenient download.<br>Right Solutions • Right Partner<br><u>www.alsglobal.com</u>                                                                                                      |
| From: Samp<br>Sent: Friday<br>To: ALSEnvi<br>Cc: Ryan OE<br>Subject: RE | From: Samples Melbourne<br>Sent: Friday, 13 January 2017 2:41 PM<br>To: ALSEnviro Sydney < <u>ALSEnviro.Sydney@ALSGlobal.com</u> ><br>Cc: Ryan ODonnell < <u>Ryan.ODonnell@alsglobal.com</u> ><br>Subject: RE: ASLP Deniliquin Additional analysis |
| Hi Sepan                                                                |                                                                                                                                                                                                                                                    |
| You already                                                             | You already have these samples in Sydney as they were originally                                                                                                                                                                                   |

originally requested for EP231 on the soil

| <u>.</u> |
|----------|
| Ω.       |
| 3        |
| ~        |
| in .     |
| •        |
| •        |

Regards

## ALS Melbourne - Christmas Closures 2016

Peter Ravlic

Front End – Springvale

Environmental



<u>F</u>+61 3 8549 9626 <u>Peter.Ravlic@alsglobal.com</u> 2-4 Westall Rd Springvale Vic 3171

Australia

From: Sepan Mahamad On Behalf Of ALSEnviro Sydney Sent: Friday, 13 January 2017 1:50 PM To: Samples Melbourne <<u>Samples.Melbourne@alsglobal.com</u>> Cc: Ryan ODonnell <<u>Ryan.ODonnell@alsglobal.com</u>> Subject: FW: ASLP Deniliquin Additional analysis

Hi Team,

Can you please send the samples listed below to the Sydney lab for ASLP PFAS analysis?

Please let me know if there are any issues.

| 4 | The following samples are required for ASLP – PFAS full suite.<br>EM1614608035 - MW01_0.1<br>EM1614608037 - MW02_0.1<br>EM1614608038 - MW02_0.1<br>EM1614608041 - MW03_0.1<br>EM1614608012 - SB01_0.1<br>EM1614608015 - SB03_0.1<br>EM1614608015 - SB03_1.0<br>EM1614608028 - SB04_0.15 | Hi Sepan,<br>Deniliquin 21/25583/05– From lab report EM1614608. Are you able to forward this onto the Melbourne lab? | From: Nicole Rosen [ <u>mailto:Nicole.Rosen@ghd.com]</u><br>Sent: Friday, 13 January 2017 1:26 PM<br>To: Sepan Mahamad < <u>Sepan.Mahamad@alsglobal.com</u> ><br>Cc: ALSEnviro Sydney < <u>ALSEnviro.Sydney@ALSGlobal.com</u> ><br>Subject: ASLP Deniliquin Additional analysis | <b>EnviroMail<sup>™</sup> 00</b> – All EnviroMails in one convenient download.<br>Right Solutions • Right Partner<br><u>www.alsglobal.com</u> | Subscribe 🛦 Training 🖬 💓 🖪 🜑 | Image: | Kind regards,<br>Sepan Mahamad<br>Client Services Officer, Environmental<br>Sydney |
|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
|   |                                                                                                                                                                                                                                                                                         |                                                                                                                      |                                                                                                                                                                                                                                                                                 |                                                                                                                                               |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                    |
|   |                                                                                                                                                                                                                                                                                         |                                                                                                                      |                                                                                                                                                                                                                                                                                 |                                                                                                                                               |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                    |

EM1614608018 - SB05\_0.1 EM1614608001 - SS01 EM1614608002 - SS02 EM1614608003 - SS03 EM1614608004 - SS04 EM1614608005 - SS05 EM1614608006 - SS06 EM1614608007 - SS07

Thanks,

### Nicole Rosen

# Senior Environmental Consultant - Contamination Assessment and Remediation

### GHD

T: +61 2 9239 7683 | F: 61 2 9239 7199 | V: 217683 | M: 0421 045 835 | E: <u>nicole.rosen@ghd.com</u> Level 15 133 Castlereagh St Sydney NSW 2000 Australia | <u>http://www.ghd.com/</u> <u>Water</u> | <u>Energy & Resources</u> | <u>Environment</u> | <u>Property & Buildings</u> | <u>Transportation</u>



🕬 Please consider the environment before printing this email

affiliates reserve the right to monitor and modify all email communications through their networks. notify the sender immediately, and please delete it; you should not copy it or use it for any purpose or disclose its contents to any other person. GHD and its CONFIDENTIALITY NOTICE: This email, including any attachments, is confidential and may be privileged. If you are not the intended recipient please

ALS Group: Click here to report this email as spam.



### **CERTIFICATE OF ANALYSIS**

| Work Order              | ES1701175                                                  | Page                    | : 1 of 15                                             |
|-------------------------|------------------------------------------------------------|-------------------------|-------------------------------------------------------|
| Client                  |                                                            | Laboratory              | : Environmental Division Sydney                       |
| Contact                 | : MR BEN ANDERSON                                          | Contact                 | : Customer Services ES                                |
| Address                 | ELEVEL 8, 180 LONSDALE ST<br>MELBOURNE VIC, AUSTRALIA 3001 | Address                 | : 277-289 Woodpark Road Smithfield NSW Australia 2164 |
| Telephone               | : +61 07 5413 8161                                         | Telephone               | : +61-2-8784 8555                                     |
| Project                 | : 212558305 FRNSW DENILIQUIN                               | Date Samples Received   | : 17-Jan-2017 14:00                                   |
| Order number            | :                                                          | Date Analysis Commenced | : 23-Jan-2017                                         |
| C-O-C number            | :                                                          | Issue Date              | : 27-Jan-2017 14:22                                   |
| Sampler                 | :                                                          |                         | Iac-MRA NATA                                          |
| Site                    | :                                                          |                         |                                                       |
| Quote number            | : EN/005/15                                                |                         | Accreditation No. 825                                 |
| No. of samples received | : 17                                                       |                         | Accredited for compliance with                        |
| No. of samples analysed | : 17                                                       |                         | ISO/IEC 17025 - Testing                               |

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

### Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

| Signatories      | Position              | Accreditation Category             |
|------------------|-----------------------|------------------------------------|
| Alex Rossi       | Organic Chemist       | Sydney Organics, Smithfield, NSW   |
| Celine Conceicao | Senior Spectroscopist | Sydney Inorganics, Smithfield, NSW |



#### **General Comments**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When no sampling time is provided, the sampling time will default 00:00 on the date of sampling. If no sampling date is provided, the sampling date will be assumed by the laboratory and displayed in brackets without a time component.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

 $\sim$  = Indicates an estimated value.

• EP231: Particular samples required dilution due to the presence of high level contaminants. LOR values have been adjusted accordingly.

# Page : 3 of 15 Work Order : ES1701175 Client : GHD PTY LTD Project : 212558305 FRNSW DENILIQUIN



| Bub-Matrix: DI WATER LEACHATE<br>(Matrix: WATER) |            | Clie         | ent sample ID  | MW01_0.1          | MW01_9.0          | MW02_0.1          | MW03_0.1          | SB01_0.1          |
|--------------------------------------------------|------------|--------------|----------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|                                                  | CI         | ient samplii | ng date / time | 30-Nov-2016 00:00 |
| Compound                                         | CAS Number | LOR          | Unit           | ES1701175-001     | ES1701175-002     | ES1701175-003     | ES1701175-004     | ES1701175-005     |
|                                                  |            |              |                | Result            | Result            | Result            | Result            | Result            |
| P231A: Perfluoroalkyl Sulfonic Acids             | ;          |              |                |                   |                   |                   |                   |                   |
| Perfluorobutane sulfonic acid                    | 375-73-5   | 0.02         | µg/L           | 0.38              | 0.15              | 0.02              | <0.02             | 0.43              |
| (PFBS)                                           |            |              |                |                   |                   |                   |                   |                   |
| Perfluoropentane sulfonic acid<br>(PFPeS)        | 2706-91-4  | 0.02         | µg/L           | 0.26              | 0.06              | 0.02              | <0.02             | 0.35              |
| Perfluorohexane sulfonic acid<br>(PFHxS)         | 355-46-4   | 0.02         | µg/L           | 3.49              | 0.27              | 0.12              | 0.08              | 4.29              |
| Perfluoroheptane sulfonic acid<br>(PFHpS)        | 375-92-8   | 0.02         | µg/L           | 1.43              | 0.04              | <0.02             | <0.02             | 0.35              |
| Perfluorooctane sulfonic acid<br>(PFOS)          | 1763-23-1  | 0.01         | µg/L           | 134               | 3.16              | 0.06              | 0.31              | 12.7              |
| Perfluorodecane sulfonic acid<br>(PFDS)          | 335-77-3   | 0.02         | µg/L           | 0.07              | <0.02             | <0.02             | <0.02             | <0.02             |
| EP231B: Perfluoroalkyl Carboxylic Ac             | ids        |              |                |                   |                   |                   |                   | 1                 |
| Perfluorobutanoic acid (PFBA)                    | 375-22-4   | 0.1          | µg/L           | <0.1              | <0.1              | <0.1              | <0.1              | <0.1              |
| Perfluoropentanoic acid (PFPeA)                  | 2706-90-3  | 0.02         | µg/L           | 0.29              | 0.11              | <0.02             | 0.03              | 0.35              |
| Perfluorohexanoic acid (PFHxA)                   | 307-24-4   | 0.02         | µg/L           | 0.96              | 0.28              | 0.02              | 0.04              | 0.80              |
| Perfluoroheptanoic acid (PFHpA)                  | 375-85-9   | 0.02         | µg/L           | 0.12              | 0.02              | <0.02             | 0.03              | 0.10              |
| Perfluorooctanoic acid (PFOA)                    | 335-67-1   | 0.01         | µg/L           | 0.77              | 0.04              | <0.01             | 0.16              | 0.32              |
| Perfluorononanoic acid (PFNA)                    | 375-95-1   | 0.02         | µg/L           | 0.07              | <0.02             | <0.02             | <0.02             | <0.02             |
| Perfluorodecanoic acid (PFDA)                    | 335-76-2   | 0.02         | µg/L           | 0.05              | <0.02             | <0.02             | <0.02             | <0.02             |
| Perfluoroundecanoic acid<br>(PFUnDA)             | 2058-94-8  | 0.02         | µg/L           | <0.02             | <0.02             | <0.02             | <0.02             | <0.02             |
| Perfluorododecanoic acid<br>(PFDoDA)             | 307-55-1   | 0.02         | µg/L           | <0.02             | <0.02             | <0.02             | <0.02             | <0.02             |
| Perfluorotridecanoic acid<br>(PFTrDA)            | 72629-94-8 | 0.02         | µg/L           | <0.02             | <0.02             | <0.02             | <0.02             | <0.02             |
| Perfluorotetradecanoic acid<br>(PFTeDA)          | 376-06-7   | 0.05         | μg/L           | <0.05             | <0.05             | <0.05             | <0.05             | <0.05             |
| P231C: Perfluoroalkyl Sulfonamides               |            |              |                |                   |                   |                   |                   |                   |
| Perfluorooctane sulfonamide<br>(FOSA)            | 754-91-6   | 0.02         | µg/L           | 0.12              | <0.02             | <0.02             | <0.02             | <0.02             |
| N-Methyl perfluorooctane<br>sulfonamide (MeFOSA) | 31506-32-8 | 0.05         | µg/L           | <0.05             | <0.05             | <0.05             | <0.05             | <0.05             |
| N-Ethyl perfluorooctane<br>sulfonamide (EtFOSA)  | 4151-50-2  | 0.05         | µg/L           | <0.05             | <0.05             | <0.05             | <0.05             | <0.05             |

# Page : 4 of 15 Work Order : ES1701175 Client : GHD PTY LTD Project : 212558305 FRNSW DENILIQUIN



| Sub-Matrix: DI WATER LEACHATE<br>(Matrix: WATER)                |                        | Clie        | ent sample ID  | MW01_0.1          | MW01_9.0          | MW02_0.1          | MW03_0.1          | SB01_0.1          |
|-----------------------------------------------------------------|------------------------|-------------|----------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|                                                                 | Cl                     | ient sampli | ng date / time | 30-Nov-2016 00:00 |
| Compound                                                        | CAS Number             | LOR         | Unit           | ES1701175-001     | ES1701175-002     | ES1701175-003     | ES1701175-004     | ES1701175-005     |
|                                                                 |                        |             | -              | Result            | Result            | Result            | Result            | Result            |
| EP231C: Perfluoroalkyl Sulfonamide                              | es - Continued         |             |                |                   |                   |                   |                   |                   |
| N-Methyl perfluorooctane<br>sulfonamidoethanol (MeFOSE)         | 2448-09-7              | 0.05        | µg/L           | <0.05             | <0.05             | <0.05             | <0.05             | <0.05             |
| N-Ethyl perfluorooctane<br>sulfonamidoethanol (EtFOSE)          | 1691-99-2              | 0.05        | µg/L           | <0.05             | <0.05             | <0.05             | <0.05             | <0.05             |
| N-Methyl perfluorooctane<br>sulfonamidoacetic acid<br>(MeFOSAA) | 2355-31-9              | 0.02        | µg/L           | <0.02             | <0.02             | <0.02             | <0.02             | <0.02             |
| N-Ethyl perfluorooctane<br>sulfonamidoacetic acid<br>(EtFOSAA)  | 2991-50-6              | 0.02        | µg/L           | <0.02             | <0.02             | <0.02             | <0.02             | <0.02             |
| EP231D: (n:2) Fluorotelomer Sulfor                              | nic Acids              |             |                |                   |                   |                   |                   |                   |
| 4:2 Fluorotelomer sulfonic acid<br>(4:2 FTS)                    | 757124-72-4            | 0.05        | µg/L           | <0.05             | <0.05             | <0.05             | <0.05             | <0.05             |
| 6:2 Fluorotelomer sulfonic acid<br>(6:2 FTS)                    | 27619-97-2             | 0.05        | µg/L           | 1.54              | 0.09              | <0.05             | <0.05             | 0.45              |
| 8:2 Fluorotelomer sulfonic acid<br>(8:2 FTS)                    | 39108-34-4             | 0.05        | µg/L           | 1.76              | 0.06              | <0.05             | <0.05             | 0.08              |
| 10:2 Fluorotelomer sulfonic acid<br>(10:2 FTS)                  | 120226-60-0            | 0.05        | µg/L           | <0.05             | <0.05             | <0.05             | <0.05             | <0.05             |
| EP231P: PFAS Sums                                               |                        |             |                |                   |                   |                   |                   |                   |
| Sum of PFAS                                                     |                        | 0.01        | µg/L           | 145               | 4.28              | 0.24              | 0.65              | 20.2              |
| Sum of PFHxS and PFOS                                           | 355-46-4/1763-23-<br>1 | 0.01        | µg/L           | 137               | 3.43              | 0.18              | 0.39              | 17.0              |
| Sum of PFAS (WA DER List)                                       |                        | 0.01        | µg/L           | 143               | 4.18              | 0.22              | 0.65              | 19.5              |
| EP231S: PFAS Surrogate                                          |                        |             |                |                   |                   |                   |                   |                   |
| 13C4-PFOS                                                       |                        | 0.02        | %              | 102               | 106               | 107               | 91.0              | 95.3              |

# Page : 5 of 15 Work Order : ES1701175 Client : GHD PTY LTD Project : 212558305 FRNSW DENILIQUIN



| Sub-Matrix: DI WATER LEACHATE<br>(Matrix: WATER) |            | Clie        | ent sample ID  | SB02_0.1          | SB03_0.1          | SB03_1.0          | SB04_0.15         | SB05_0.1          |
|--------------------------------------------------|------------|-------------|----------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|                                                  | Cl         | ient sampli | ng date / time | 29-Nov-2016 00:00 | 29-Nov-2016 00:00 | 29-Nov-2016 00:00 | 30-Nov-2016 00:00 | 29-Nov-2016 00:00 |
| Compound                                         | CAS Number | LOR         | Unit           | ES1701175-006     | ES1701175-007     | ES1701175-008     | ES1701175-009     | ES1701175-010     |
|                                                  |            |             | -              | Result            | Result            | Result            | Result            | Result            |
| P231A: Perfluoroalkyl Sulfonic Acids             | ;          |             |                |                   |                   |                   |                   |                   |
| Perfluorobutane sulfonic acid                    | 375-73-5   | 0.02        | µg/L           | 11.3              | 0.05              | 4.09              | 0.43              | <0.02             |
| (PFBS)                                           |            |             |                |                   |                   |                   |                   |                   |
| Perfluoropentane sulfonic acid (PFPeS)           | 2706-91-4  | 0.02        | µg/L           | 9.11              | 0.04              | 2.28              | 0.41              | <0.02             |
| Perfluorohexane sulfonic acid<br>(PFHxS)         | 355-46-4   | 0.02        | µg/L           | 84.7              | 0.44              | 5.13              | 6.02              | 0.05              |
| Perfluoroheptane sulfonic acid<br>(PFHpS)        | 375-92-8   | 0.02        | µg/L           | 15.8              | 0.06              | 0.03              | 1.78              | <0.02             |
| Perfluorooctane sulfonic acid<br>(PFOS)          | 1763-23-1  | 0.01        | µg/L           | 671               | 16.6              | 0.92              | 45.7              | 0.13              |
| Perfluorodecane sulfonic acid<br>(PFDS)          | 335-77-3   | 0.02        | µg/L           | <0.20             | 0.11              | <0.02             | <0.02             | <0.02             |
| EP231B: Perfluoroalkyl Carboxylic Ac             | cids       |             |                |                   |                   |                   |                   | 1                 |
| Perfluorobutanoic acid (PFBA)                    | 375-22-4   | 0.1         | µg/L           | 4.4               | <0.1              | 0.8               | <0.1              | <0.1              |
| Perfluoropentanoic acid (PFPeA)                  | 2706-90-3  | 0.02        | µg/L           | 5.21              | 0.06              | 3.14              | 0.21              | <0.02             |
| Perfluorohexanoic acid (PFHxA)                   | 307-24-4   | 0.02        | µg/L           | 18.2              | 0.19              | 6.02              | 0.62              | <0.02             |
| Perfluoroheptanoic acid (PFHpA)                  | 375-85-9   | 0.02        | µg/L           | 2.31              | 0.03              | 0.88              | 0.15              | <0.02             |
| Perfluorooctanoic acid (PFOA)                    | 335-67-1   | 0.01        | µg/L           | 9.88              | 0.09              | 0.29              | 0.80              | 0.09              |
| Perfluorononanoic acid (PFNA)                    | 375-95-1   | 0.02        | µg/L           | <0.20             | <0.02             | <0.02             | <0.02             | <0.02             |
| Perfluorodecanoic acid (PFDA)                    | 335-76-2   | 0.02        | µg/L           | <0.20             | <0.02             | <0.02             | <0.02             | <0.02             |
| Perfluoroundecanoic acid<br>(PFUnDA)             | 2058-94-8  | 0.02        | µg/L           | <0.20             | <0.02             | <0.02             | <0.02             | <0.02             |
| Perfluorododecanoic acid<br>(PFDoDA)             | 307-55-1   | 0.02        | µg/L           | <0.20             | <0.02             | <0.02             | <0.02             | <0.02             |
| Perfluorotridecanoic acid<br>(PFTrDA)            | 72629-94-8 | 0.02        | µg/L           | <0.20             | <0.02             | <0.02             | <0.02             | <0.02             |
| Perfluorotetradecanoic acid<br>(PFTeDA)          | 376-06-7   | 0.05        | µg/L           | <0.50             | <0.05             | <0.05             | <0.05             | <0.05             |
| P231C: Perfluoroalkyl Sulfonamides               |            |             |                |                   |                   |                   |                   |                   |
| Perfluorooctane sulfonamide<br>(FOSA)            | 754-91-6   | 0.02        | µg/L           | 2.01              | 0.13              | <0.02             | <0.02             | <0.02             |
| N-Methyl perfluorooctane<br>sulfonamide (MeFOSA) | 31506-32-8 | 0.05        | µg/L           | <0.50             | <0.05             | <0.05             | <0.05             | <0.05             |
| N-Ethyl perfluorooctane<br>sulfonamide (EtFOSA)  | 4151-50-2  | 0.05        | µg/L           | <0.50             | <0.05             | <0.05             | <0.05             | <0.05             |

# Page : 6 of 15 Work Order : ES1701175 Client : GHD PTY LTD Project : 212558305 FRNSW DENILIQUIN



| Sub-Matrix: DI WATER LEACHATE<br>(Matrix: WATER)                |                        | Clie                        | ent sample ID | SB02_0.1      | SB03_0.1          | SB03_1.0          | SB04_0.15         | SB05_0.1          |
|-----------------------------------------------------------------|------------------------|-----------------------------|---------------|---------------|-------------------|-------------------|-------------------|-------------------|
|                                                                 | CI                     | Client sampling date / time |               |               | 29-Nov-2016 00:00 | 29-Nov-2016 00:00 | 30-Nov-2016 00:00 | 29-Nov-2016 00:00 |
| Compound                                                        | CAS Number             | LOR                         | Unit          | ES1701175-006 | ES1701175-007     | ES1701175-008     | ES1701175-009     | ES1701175-010     |
|                                                                 |                        |                             |               | Result        | Result            | Result            | Result            | Result            |
| EP231C: Perfluoroalkyl Sulfonamid                               | es - Continued         |                             |               |               |                   |                   |                   |                   |
| N-Methyl perfluorooctane<br>sulfonamidoethanol (MeFOSE)         | 2448-09-7              | 0.05                        | µg/L          | <0.50         | <0.05             | <0.05             | <0.05             | <0.05             |
| N-Ethyl perfluorooctane<br>sulfonamidoethanol (EtFOSE)          | 1691-99-2              | 0.05                        | µg/L          | <0.50         | <0.05             | <0.05             | <0.05             | <0.05             |
| N-Methyl perfluorooctane<br>sulfonamidoacetic acid<br>(MeFOSAA) | 2355-31-9              | 0.02                        | µg/L          | <0.20         | <0.02             | <0.02             | <0.02             | <0.02             |
| N-Ethyl perfluorooctane<br>sulfonamidoacetic acid<br>(EtFOSAA)  | 2991-50-6              | 0.02                        | µg/L          | <0.20         | <0.02             | <0.02             | <0.02             | <0.02             |
| EP231D: (n:2) Fluorotelomer Sulfor                              | nic Acids              |                             |               |               |                   |                   |                   |                   |
| 4:2 Fluorotelomer sulfonic acid<br>(4:2 FTS)                    | 757124-72-4            | 0.05                        | µg/L          | 0.54          | <0.05             | <0.05             | <0.05             | <0.05             |
| 6:2 Fluorotelomer sulfonic acid<br>(6:2 FTS)                    | 27619-97-2             | 0.05                        | µg/L          | 45.9          | 0.12              | 0.19              | 2.72              | <0.05             |
| 8:2 Fluorotelomer sulfonic acid<br>(8:2 FTS)                    | 39108-34-4             | 0.05                        | µg/L          | 8.63          | 0.15              | <0.05             | 0.17              | <0.05             |
| 10:2 Fluorotelomer sulfonic acid<br>(10:2 FTS)                  | 120226-60-0            | 0.05                        | µg/L          | <0.50         | <0.05             | <0.05             | <0.05             | <0.05             |
| EP231P: PFAS Sums                                               |                        |                             |               |               |                   |                   |                   |                   |
| Sum of PFAS                                                     |                        | 0.01                        | µg/L          | 889           | 18.1              | 23.8              | 59.0              | 0.27              |
| Sum of PFHxS and PFOS                                           | 355-46-4/1763-23-<br>1 | 0.01                        | µg/L          | 756           | 17.0              | 6.05              | 51.7              | 0.18              |
| Sum of PFAS (WA DER List)                                       |                        | 0.01                        | µg/L          | 862           | 17.7              | 21.5              | 56.8              | 0.27              |
| EP231S: PFAS Surrogate                                          |                        |                             |               |               |                   |                   |                   |                   |
| 13C4-PFOS                                                       |                        | 0.02                        | %             | 95.4          | 94.7              | 100               | 106               | 89.1              |

# Page : 7 of 15 Work Order : ES1701175 Client : GHD PTY LTD Project : 212558305 FRNSW DENILIQUIN



| Sub-Matrix: DI WATER LEACHATE<br>(Matrix: WATER) |            | Clie         | ent sample ID  | SS01              | SS02              | SS03              | SS04              | SS05         29-Nov-2016 00:00         ES1701175-015         Result         <0.02         <0.02         0.09         <0.02         0.09         <0.02         0.09         <0.02         <0.02         <0.02         <0.02         <0.02         <0.02         <0.02         <0.05         <0.12         <0.02         <0.02         <0.02         <0.02         <0.02         <0.02         <0.02         <0.02         <0.02         <0.02         <0.02         <0.02         <0.02         <0.02         <0.02         <0.02         <0.03         <0.05         <0.02         <0.05         <0.05         <0.05         <0.05         <0.05 |
|--------------------------------------------------|------------|--------------|----------------|-------------------|-------------------|-------------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                  | CI         | ient samplii | ng date / time | 29-Nov-2016 00:00 | 29-Nov-2016 00:00 | 29-Nov-2016 00:00 | 29-Nov-2016 00:00 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Compound                                         | CAS Number | LOR          | Unit           | ES1701175-011     | ES1701175-012     | ES1701175-013     | ES1701175-014     | ES1701175-015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                  |            |              |                | Result            | Result            | Result            | Result            | Result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| P231A: Perfluoroalkyl Sulfonic Acids             | ;          |              |                |                   |                   |                   |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Perfluorobutane sulfonic acid<br>(PFBS)          | 375-73-5   | 0.02         | µg/L           | 0.07              | 0.04              | <0.02             | <0.02             | <0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Perfluoropentane sulfonic acid<br>(PFPeS)        | 2706-91-4  | 0.02         | µg/L           | 0.04              | 0.02              | <0.02             | <0.02             | <0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Perfluorohexane sulfonic acid<br>(PFHxS)         | 355-46-4   | 0.02         | µg/L           | 0.31              | 0.26              | 0.05              | <0.02             | 0.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Perfluoroheptane sulfonic acid<br>(PFHpS)        | 375-92-8   | 0.02         | µg/L           | 0.05              | 0.05              | <0.02             | <0.02             | <0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Perfluorooctane sulfonic acid<br>(PFOS)          | 1763-23-1  | 0.01         | µg/L           | 15.9              | 28.7              | 1.17              | 0.36              | 1.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Perfluorodecane sulfonic acid<br>(PFDS)          | 335-77-3   | 0.02         | µg/L           | <0.02             | 0.26              | <0.02             | <0.02             | <0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| EP231B: Perfluoroalkyl Carboxylic Ac             | ids        |              |                |                   |                   |                   |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Perfluorobutanoic acid (PFBA)                    | 375-22-4   | 0.1          | µg/L           | <0.1              | <0.00             | <0.00             | <0.00             | <0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Perfluoropentanoic acid (PFPeA)                  | 2706-90-3  | 0.02         | µg/L           | 0.09              | 0.11              | <0.02             | <0.02             | 0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Perfluorohexanoic acid (PFHxA)                   | 307-24-4   | 0.02         | µg/L           | 0.16              | 0.20              | 0.02              | <0.02             | 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Perfluoroheptanoic acid (PFHpA)                  | 375-85-9   | 0.02         | µg/L           | 0.03              | 0.04              | <0.02             | <0.02             | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Perfluorooctanoic acid (PFOA)                    | 335-67-1   | 0.01         | µg/L           | 0.12              | 0.11              | 0.02              | <0.01             | 0.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Perfluorononanoic acid (PFNA)                    | 375-95-1   | 0.02         | µg/L           | 0.05              | <0.02             | <0.02             | <0.02             | <0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Perfluorodecanoic acid (PFDA)                    | 335-76-2   | 0.02         | µg/L           | 0.04              | 0.30              | <0.02             | <0.02             | <0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Perfluoroundecanoic acid<br>(PFUnDA)             | 2058-94-8  | 0.02         | µg/L           | <0.02             | 0.11              | <0.02             | <0.02             | <0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Perfluorododecanoic acid<br>(PFDoDA)             | 307-55-1   | 0.02         | µg/L           | <0.02             | 0.04              | <0.02             | <0.02             | <0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Perfluorotridecanoic acid<br>(PFTrDA)            | 72629-94-8 | 0.02         | μg/L           | <0.02             | <0.02             | <0.02             | <0.02             | <0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Perfluorotetradecanoic acid<br>(PFTeDA)          | 376-06-7   | 0.05         | µg/L           | <0.05             | <0.05             | <0.05             | <0.05             | <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| P231C: Perfluoroalkyl Sulfonamides               |            |              |                |                   |                   |                   |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Perfluorooctane sulfonamide<br>(FOSA)            | 754-91-6   | 0.02         | µg/L           | 0.06              | 0.59              | <0.02             | <0.02             | <0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| N-Methyl perfluorooctane<br>sulfonamide (MeFOSA) | 31506-32-8 | 0.05         | µg/L           | <0.05             | <0.05             | <0.05             | <0.05             | <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| N-Ethyl perfluorooctane<br>sulfonamide (EtFOSA)  | 4151-50-2  | 0.05         | µg/L           | <0.05             | <0.05             | <0.05             | <0.05             | <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

# Page : 8 of 15 Work Order : ES1701175 Client : GHD PTY LTD Project : 212558305 FRNSW DENILIQUIN



| Sub-Matrix: DI WATER LEACHATE<br>(Matrix: WATER)                |                        | Clie                        | ent sample ID | SS01          | SS02              | SS03              | SS04              | SS05              |
|-----------------------------------------------------------------|------------------------|-----------------------------|---------------|---------------|-------------------|-------------------|-------------------|-------------------|
|                                                                 | Cl                     | Client sampling date / time |               |               | 29-Nov-2016 00:00 | 29-Nov-2016 00:00 | 29-Nov-2016 00:00 | 29-Nov-2016 00:00 |
| Compound                                                        | CAS Number             | LOR                         | Unit          | ES1701175-011 | ES1701175-012     | ES1701175-013     | ES1701175-014     | ES1701175-015     |
|                                                                 |                        |                             |               | Result        | Result            | Result            | Result            | Result            |
| EP231C: Perfluoroalkyl Sulfonamide                              | es - Continued         |                             |               |               |                   |                   |                   |                   |
| N-Methyl perfluorooctane<br>sulfonamidoethanol (MeFOSE)         | 2448-09-7              | 0.05                        | µg/L          | <0.05         | <0.05             | <0.05             | <0.05             | <0.05             |
| N-Ethyl perfluorooctane<br>sulfonamidoethanol (EtFOSE)          | 1691-99-2              | 0.05                        | µg/L          | <0.05         | <0.05             | <0.05             | <0.05             | <0.05             |
| N-Methyl perfluorooctane<br>sulfonamidoacetic acid<br>(MeFOSAA) | 2355-31-9              | 0.02                        | µg/L          | <0.02         | <0.02             | <0.02             | <0.02             | <0.02             |
| N-Ethyl perfluorooctane<br>sulfonamidoacetic acid<br>(EtFOSAA)  | 2991-50-6              | 0.02                        | µg/L          | <0.02         | <0.02             | <0.02             | <0.02             | <0.02             |
| EP231D: (n:2) Fluorotelomer Sulfor                              | nic Acids              |                             |               |               |                   |                   |                   |                   |
| 4:2 Fluorotelomer sulfonic acid<br>(4:2 FTS)                    | 757124-72-4            | 0.05                        | µg/L          | <0.05         | <0.05             | <0.05             | <0.05             | <0.05             |
| 6:2 Fluorotelomer sulfonic acid<br>(6:2 FTS)                    | 27619-97-2             | 0.05                        | µg/L          | 0.31          | 0.54              | <0.05             | <0.05             | <0.05             |
| 8:2 Fluorotelomer sulfonic acid<br>(8:2 FTS)                    | 39108-34-4             | 0.05                        | µg/L          | 0.28          | 1.26              | <0.05             | <0.05             | <0.05             |
| 10:2 Fluorotelomer sulfonic acid<br>(10:2 FTS)                  | 120226-60-0            | 0.05                        | µg/L          | <0.05         | 0.30              | <0.05             | <0.05             | <0.05             |
| EP231P: PFAS Sums                                               |                        |                             |               |               |                   |                   |                   |                   |
| Sum of PFAS                                                     |                        | 0.01                        | µg/L          | 17.5          | 32.9              | 1.26              | 0.36              | 1.71              |
| Sum of PFHxS and PFOS                                           | 355-46-4/1763-23-<br>1 | 0.01                        | µg/L          | 16.2          | 29.0              | 1.22              | 0.36              | 1.41              |
| Sum of PFAS (WA DER List)                                       |                        | 0.01                        | µg/L          | 17.3          | 31.3              | 1.26              | 0.36              | 1.71              |
| EP231S: PFAS Surrogate                                          |                        |                             |               |               |                   |                   |                   |                   |
| 13C4-PFOS                                                       |                        | 0.02                        | %             | 93.7          | 102               | 95.9              | 94.1              | 99.0              |

# Page : 9 of 15 Work Order : ES1701175 Client : GHD PTY LTD Project : 212558305 FRNSW DENILIQUIN



| Sub-Matrix: DI WATER LEACHATE<br>(Matrix: WATER) |            | Clie        | ent sample ID  | SS06              | SS07              | <br> |  |
|--------------------------------------------------|------------|-------------|----------------|-------------------|-------------------|------|--|
|                                                  | Cl         | ient sampli | ng date / time | 29-Nov-2016 00:00 | 29-Nov-2016 00:00 | <br> |  |
| Compound                                         | CAS Number | LOR         | Unit           | ES1701175-016     | ES1701175-017     | <br> |  |
|                                                  |            |             |                | Result            | Result            | <br> |  |
| EP231A: Perfluoroalkyl Sulfonic Acids            |            |             |                |                   |                   |      |  |
| Perfluorobutane sulfonic acid                    | 375-73-5   | 0.02        | µg/L           | <0.02             | <0.02             | <br> |  |
| (PFBS)                                           |            |             |                |                   |                   |      |  |
| Perfluoropentane sulfonic acid<br>(PFPeS)        | 2706-91-4  | 0.02        | µg/L           | <0.02             | <0.02             | <br> |  |
| Perfluorohexane sulfonic acid<br>(PFHxS)         | 355-46-4   | 0.02        | µg/L           | 0.03              | <0.02             | <br> |  |
| Perfluoroheptane sulfonic acid<br>(PFHpS)        | 375-92-8   | 0.02        | µg/L           | <0.02             | <0.02             | <br> |  |
| Perfluorooctane sulfonic acid<br>(PFOS)          | 1763-23-1  | 0.01        | µg/L           | 2.24              | 1.26              | <br> |  |
| Perfluorodecane sulfonic acid<br>(PFDS)          | 335-77-3   | 0.02        | µg/L           | <0.02             | <0.02             | <br> |  |
| EP231B: Perfluoroalkyl Carboxylic Ac             | ids        |             |                |                   |                   |      |  |
| Perfluorobutanoic acid (PFBA)                    | 375-22-4   | 0.1         | µg/L           | <0.00             | <0.00             | <br> |  |
| Perfluoropentanoic acid (PFPeA)                  | 2706-90-3  | 0.02        | µg/L           | <0.02             | <0.02             | <br> |  |
| Perfluorohexanoic acid (PFHxA)                   | 307-24-4   | 0.02        | µg/L           | 0.02              | <0.02             | <br> |  |
| Perfluoroheptanoic acid (PFHpA)                  | 375-85-9   | 0.02        | µg/L           | <0.02             | <0.02             | <br> |  |
| Perfluorooctanoic acid (PFOA)                    | 335-67-1   | 0.01        | µg/L           | <0.01             | <0.01             | <br> |  |
| Perfluorononanoic acid (PFNA)                    | 375-95-1   | 0.02        | µg/L           | <0.02             | <0.02             | <br> |  |
| Perfluorodecanoic acid (PFDA)                    | 335-76-2   | 0.02        | µg/L           | <0.02             | <0.02             | <br> |  |
| Perfluoroundecanoic acid<br>(PFUnDA)             | 2058-94-8  | 0.02        | µg/L           | <0.02             | <0.02             | <br> |  |
| Perfluorododecanoic acid<br>(PFDoDA)             | 307-55-1   | 0.02        | µg/L           | <0.02             | <0.02             | <br> |  |
| Perfluorotridecanoic acid<br>(PFTrDA)            | 72629-94-8 | 0.02        | µg/L           | <0.02             | <0.02             | <br> |  |
| Perfluorotetradecanoic acid<br>(PFTeDA)          | 376-06-7   | 0.05        | µg/L           | <0.05             | <0.05             | <br> |  |
| EP231C: Perfluoroalkyl Sulfonamides              |            |             |                |                   |                   |      |  |
| Perfluorooctane sulfonamide<br>(FOSA)            | 754-91-6   | 0.02        | µg/L           | <0.02             | <0.02             | <br> |  |
| N-Methyl perfluorooctane<br>sulfonamide (MeFOSA) | 31506-32-8 | 0.05        | µg/L           | <0.05             | <0.05             | <br> |  |
| N-Ethyl perfluorooctane<br>sulfonamide (EtFOSA)  | 4151-50-2  | 0.05        | µg/L           | <0.05             | <0.05             | <br> |  |

# Page : 10 of 15 Work Order : ES1701175 Client : GHD PTY LTD Project : 212558305 FRNSW DENILIQUIN



| Sub-Matrix: DI WATER LEACHATE<br>(Matrix: WATER)                |                        | Client sample ID |                |                   | SS07              | <br> |  |
|-----------------------------------------------------------------|------------------------|------------------|----------------|-------------------|-------------------|------|--|
|                                                                 | Cl                     | ient sampli      | ng date / time | 29-Nov-2016 00:00 | 29-Nov-2016 00:00 | <br> |  |
| Compound                                                        | CAS Number             | LOR              | Unit           | ES1701175-016     | ES1701175-017     | <br> |  |
|                                                                 |                        |                  |                | Result            | Result            | <br> |  |
| EP231C: Perfluoroalkyl Sulfonamide                              | es - Continued         |                  |                |                   |                   |      |  |
| N-Methyl perfluorooctane<br>sulfonamidoethanol (MeFOSE)         | 2448-09-7              | 0.05             | µg/L           | <0.05             | <0.05             | <br> |  |
| N-Ethyl perfluorooctane<br>sulfonamidoethanol (EtFOSE)          | 1691-99-2              | 0.05             | µg/L           | <0.05             | <0.05             | <br> |  |
| N-Methyl perfluorooctane<br>sulfonamidoacetic acid<br>(MeFOSAA) | 2355-31-9              | 0.02             | µg/L           | <0.02             | <0.02             | <br> |  |
| N-Ethyl perfluorooctane<br>sulfonamidoacetic acid<br>(EtFOSAA)  | 2991-50-6              | 0.02             | µg/L           | <0.02             | <0.02             | <br> |  |
| EP231D: (n:2) Fluorotelomer Sulfon                              | ic Acids               |                  |                |                   |                   |      |  |
| 4:2 Fluorotelomer sulfonic acid<br>(4:2 FTS)                    | 757124-72-4            | 0.05             | µg/L           | <0.05             | <0.05             | <br> |  |
| 6:2 Fluorotelomer sulfonic acid<br>(6:2 FTS)                    | 27619-97-2             | 0.05             | µg/L           | <0.05             | <0.05             | <br> |  |
| 8:2 Fluorotelomer sulfonic acid<br>(8:2 FTS)                    | 39108-34-4             | 0.05             | µg/L           | <0.05             | <0.05             | <br> |  |
| 10:2 Fluorotelomer sulfonic acid<br>(10:2 FTS)                  | 120226-60-0            | 0.05             | µg/L           | <0.05             | <0.05             | <br> |  |
| EP231P: PFAS Sums                                               |                        |                  |                |                   |                   |      |  |
| Sum of PFAS                                                     |                        | 0.01             | µg/L           | 2.29              | 1.26              | <br> |  |
| Sum of PFHxS and PFOS                                           | 355-46-4/1763-23-<br>1 | 0.01             | µg/L           | 2.27              | 1.26              | <br> |  |
| Sum of PFAS (WA DER List)                                       |                        | 0.01             | µg/L           | 2.29              | 1.26              | <br> |  |
| EP231S: PFAS Surrogate                                          |                        |                  |                |                   |                   |      |  |
| 13C4-PFOS                                                       |                        | 0.02             | %              | 102               | 104               | <br> |  |



| Sub-Matrix: SOIL<br>(Matrix: SOIL) |                     | Clie         | ent sample ID  | MW01_0.1          | MW01_9.0          | MW02_0.1          | MW03_0.1          | SB01_0.1          |
|------------------------------------|---------------------|--------------|----------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|                                    | Cl                  | ient samplii | ng date / time | 30-Nov-2016 00:00 |
| Compound                           | CAS Number LOR Unit |              | ES1701175-001  | ES1701175-002     | ES1701175-003     | ES1701175-004     | ES1701175-005     |                   |
|                                    |                     |              |                | Result            | Result            | Result            | Result            | Result            |
| EN60: Bottle Leaching Procedure    |                     |              |                |                   |                   |                   |                   |                   |
| Final pH                           |                     | 0.1          | pH Unit        | 7.6               | 9.4               | 8.6               | 6.9               | 7.3               |



| Sub-Matrix: SOIL<br>(Matrix: SOIL) |                     | Clie         | ent sample ID  | SB02_0.1          | SB03_0.1          | SB03_1.0          | SB04_0.15         | SB05_0.1          |
|------------------------------------|---------------------|--------------|----------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|                                    | Cl                  | ient samplii | ng date / time | 29-Nov-2016 00:00 | 29-Nov-2016 00:00 | 29-Nov-2016 00:00 | 30-Nov-2016 00:00 | 29-Nov-2016 00:00 |
| Compound                           | CAS Number LOR Unit |              | ES1701175-006  | ES1701175-007     | ES1701175-008     | ES1701175-009     | ES1701175-010     |                   |
|                                    |                     |              |                | Result            | Result            | Result            | Result            | Result            |
| EN60: Bottle Leaching Procedure    |                     |              |                |                   |                   |                   |                   |                   |
| Final pH                           |                     | 0.1          | pH Unit        | 8.9               | 7.9               | 9.0               | 8.9               | 7.3               |



| Sub-Matrix: SOIL<br>(Matrix: SOIL) |                     | Clie          | ent sample ID  | SS01              | SS02              | SS03              | SS04              | SS05              |
|------------------------------------|---------------------|---------------|----------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|                                    | Cl                  | lient samplii | ng date / time | 29-Nov-2016 00:00 |
| Compound                           | CAS Number LOR Unit |               | ES1701175-011  | ES1701175-012     | ES1701175-013     | ES1701175-014     | ES1701175-015     |                   |
|                                    |                     |               |                | Result            | Result            | Result            | Result            | Result            |
| EN60: Bottle Leaching Procedure    |                     |               |                |                   |                   |                   |                   |                   |
| Final pH                           |                     | 0.1           | pH Unit        | 7.0               | 7.8               | 7.0               | 7.7               | 6.8               |



| Sub-Matrix: SOIL<br>(Matrix: SOIL) |                     | Clie          | ent sample ID  | SS06              | SS07              | <br> |  |
|------------------------------------|---------------------|---------------|----------------|-------------------|-------------------|------|--|
|                                    | CI                  | lient sampliı | ng date / time | 29-Nov-2016 00:00 | 29-Nov-2016 00:00 | <br> |  |
| Compound                           | CAS Number LOR Unit |               | ES1701175-016  | ES1701175-017     | <br>              |      |  |
|                                    |                     |               |                | Result            | Result            | <br> |  |
| EN60: Bottle Leaching Procedure    |                     |               |                |                   |                   |      |  |
| Final pH                           |                     | 0.1           | pH Unit        | 7.6               | 8.2               | <br> |  |

| Page       | : 15 of 15                 |
|------------|----------------------------|
| Work Order | : ES1701175                |
| Client     | : GHD PTY LTD              |
| Project    | 212558305 FRNSW DENILIQUIN |



## Surrogate Control Limits

| Sub-Matrix: DI WATER LEACHATE |            | Recovery | Limits (%) |
|-------------------------------|------------|----------|------------|
| Compound                      | CAS Number | Low      | High       |
| EP231S: PFAS Surrogate        |            |          |            |
| 13C4-PFOS                     |            | 60       | 130        |



|              | QA/QC Compliance Assessment to assist with Quality Review |                         |                                 |  |  |  |  |  |  |
|--------------|-----------------------------------------------------------|-------------------------|---------------------------------|--|--|--|--|--|--|
| Work Order   | : ES1701175                                               | Page                    | : 1 of 6                        |  |  |  |  |  |  |
| Client       | : GHD PTY LTD                                             | Laboratory              | : Environmental Division Sydney |  |  |  |  |  |  |
| Contact      | : MR BEN ANDERSON                                         | Telephone               | : +61-2-8784 8555               |  |  |  |  |  |  |
| Project      | : 212558305 FRNSW DENILIQUIN                              | Date Samples Received   | : 17-Jan-2017                   |  |  |  |  |  |  |
| Site         | :                                                         | Issue Date              | : 27-Jan-2017                   |  |  |  |  |  |  |
| Sampler      | :                                                         | No. of samples received | : 17                            |  |  |  |  |  |  |
| Order number | :                                                         | No. of samples analysed | : 17                            |  |  |  |  |  |  |
| Order number | :                                                         | No. of samples analysed | : 17                            |  |  |  |  |  |  |

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

## **Summary of Outliers**

### **Outliers : Quality Control Samples**

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- <u>NO</u> Duplicate outliers occur.
- <u>NO</u> Laboratory Control outliers occur.
- Matrix Spike outliers exist please see following pages for full details.
- For all regular sample matrices, <u>NO</u> surrogate recovery outliers occur.

### **Outliers : Analysis Holding Time Compliance**

• <u>NO</u> Analysis Holding Time Outliers exist.

### **Outliers : Frequency of Quality Control Samples**

• <u>NO</u> Quality Control Sample Frequency Outliers exist.



#### **Outliers : Quality Control Samples**

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

#### Matrix: WATER

Matrix: SOII

| Compound Group Name                   | Laboratory Sample ID | Client Sample ID | Analyte              | Analyte CAS Number Data Limits Comment |            | Comment |                                  |
|---------------------------------------|----------------------|------------------|----------------------|----------------------------------------|------------|---------|----------------------------------|
| Matrix Spike (MS) Recoveries          |                      |                  |                      |                                        |            |         |                                  |
| EP231A: Perfluoroalkyl Sulfonic Acids | ES1700845003         | Anonymous        | Perfluorohexane      | 355-46-4                               | Not        |         | MS recovery not determined,      |
|                                       |                      |                  | sulfonic acid        |                                        | Determined |         | background level greater than or |
|                                       |                      |                  | (PFHxS)              |                                        |            |         | equal to 4x spike level.         |
| EP231A: Perfluoroalkyl Sulfonic Acids | ES1700845003         | Anonymous        | Perfluorooctane      | 1763-23-1                              | Not        |         | MS recovery not determined,      |
|                                       |                      |                  | sulfonic acid (PFOS) |                                        | Determined |         | background level greater than or |
|                                       |                      |                  |                      |                                        |            |         | equal to 4x spike level.         |
| EP231A: Perfluoroalkyl Sulfonic Acids | ES1701175012         | SS02             | Perfluorooctane      | 1763-23-1                              | Not        |         | MS recovery not determined,      |
|                                       |                      |                  | sulfonic acid (PFOS) |                                        | Determined |         | background level greater than or |
|                                       |                      |                  |                      |                                        |            |         | equal to 4x spike level.         |

### Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive <u>or</u> Vinyl Chloride and Styrene are not key analytes of interest/concern.

Evaluation: \* = Holding time breach ;  $\checkmark$  = Within holding time.

| Method                               |                          |             | Extraction / Preparation |                    |            | Analysis      |                  |            |
|--------------------------------------|--------------------------|-------------|--------------------------|--------------------|------------|---------------|------------------|------------|
| Container / Client Sample ID(s)      |                          |             | Date extracted           | Due for extraction | Evaluation | Date analysed | Due for analysis | Evaluation |
| EN60: Bottle Leaching Procedure      |                          |             |                          |                    |            |               |                  |            |
| Non-Volatile Leach: 180 day HT (e.g. | metals ex.Hg) (EN60-DIa) |             |                          |                    |            |               |                  |            |
| SB02_0.1,                            | SB03_0.1,                | 29-Nov-2016 | 23-Jan-2017              | 28-May-2017        | 1          |               |                  |            |
| SB03_1.0,                            | SB05_0.1,                |             |                          |                    |            |               |                  |            |
| SS01,                                | SS02,                    |             |                          |                    |            |               |                  |            |
| SS03,                                | SS04,                    |             |                          |                    |            |               |                  |            |
| SS05,                                | SS06,                    |             |                          |                    |            |               |                  |            |
| SS07                                 |                          |             |                          |                    |            |               |                  |            |
| Non-Volatile Leach: 180 day HT (e.g. | metals ex.Hg) (EN60-DIa) |             |                          |                    |            |               |                  |            |
| MW01_0.1,                            | MW01_9.0,                | 30-Nov-2016 | 23-Jan-2017              | 29-May-2017        | 1          |               |                  |            |
| MW02_0.1,                            | MW03_0.1,                |             |                          |                    |            |               |                  |            |
| SB01_0.1,                            | SB04_0.15                |             |                          |                    |            |               |                  |            |

| Matrix: WATER Evaluation: * = Holding time breach ; $\checkmark$ = Within holding |             |                                   |                    |            |               |                  |            |  |
|-----------------------------------------------------------------------------------|-------------|-----------------------------------|--------------------|------------|---------------|------------------|------------|--|
| Method                                                                            | Sample Date | Extraction / Preparation Analysis |                    |            |               | Analysis         |            |  |
| Container / Client Sample ID(s)                                                   |             | Date extracted                    | Due for extraction | Evaluation | Date analysed | Due for analysis | Evaluation |  |

| Page       | : 3 of 6                   |
|------------|----------------------------|
| Work Order | : ES1701175                |
| Client     | : GHD PTY LTD              |
| Project    | 212558305 FRNSW DENILIQUIN |



| Matrix: WATER                           |           |             |                          |                    | Evaluation | n: × = Holding time | breach ; ✓ = With | in holding tim        |
|-----------------------------------------|-----------|-------------|--------------------------|--------------------|------------|---------------------|-------------------|-----------------------|
| Method                                  |           | Sample Date | Extraction / Preparation |                    |            | Analysis            |                   |                       |
| Container / Client Sample ID(s)         |           |             | Date extracted           | Due for extraction | Evaluation | Date analysed       | Due for analysis  | Evaluation            |
| EP231A: Perfluoroalkyl Sulfonic Acids   |           |             |                          |                    |            |                     |                   |                       |
| HDPE (no PTFE) (EP231X)                 |           |             |                          |                    |            |                     |                   |                       |
| MW01_0.1,                               | MW01_9.0, | 23-Jan-2017 |                          |                    |            | 24-Jan-2017         | 22-Jul-2017       | <ul> <li>✓</li> </ul> |
| MW02_0.1,                               | MW03_0.1, |             |                          |                    |            |                     |                   |                       |
| SB01_0.1,                               | SB02_0.1, |             |                          |                    |            |                     |                   |                       |
| SB03_0.1,                               | SB03_1.0, |             |                          |                    |            |                     |                   |                       |
| SB04_0.15,                              | SB05_0.1, |             |                          |                    |            |                     |                   |                       |
| SS01                                    |           |             |                          |                    |            |                     |                   |                       |
| HDPE (no PTFE) (EP231X)                 |           |             |                          |                    |            |                     |                   |                       |
| SS02,                                   | SS03,     | 23-Jan-2017 |                          |                    |            | 25-Jan-2017         | 22-Jul-2017       | <ul> <li>✓</li> </ul> |
| SS04,                                   | SS05,     |             |                          |                    |            |                     |                   |                       |
| SS06,                                   | SS07      |             |                          |                    |            |                     |                   |                       |
| EP231B: Perfluoroalkyl Carboxylic Acids |           |             |                          |                    |            |                     |                   |                       |
| HDPE (no PTFE) (EP231X)                 |           |             |                          |                    |            |                     |                   |                       |
| MW01_0.1,                               | MW01_9.0, | 23-Jan-2017 |                          |                    |            | 24-Jan-2017         | 22-Jul-2017       | <ul> <li>✓</li> </ul> |
| MW02_0.1,                               | MW03_0.1, |             |                          |                    |            |                     |                   |                       |
| SB01_0.1,                               | SB02_0.1, |             |                          |                    |            |                     |                   |                       |
| SB03_0.1,                               | SB03_1.0, |             |                          |                    |            |                     |                   |                       |
| SB04_0.15,                              | SB05_0.1, |             |                          |                    |            |                     |                   |                       |
| SS01                                    |           |             |                          |                    |            |                     |                   |                       |
| HDPE (no PTFE) (EP231X)                 |           |             |                          |                    |            |                     |                   |                       |
| SS02,                                   | SS03,     | 23-Jan-2017 |                          |                    |            | 25-Jan-2017         | 22-Jul-2017       | <ul> <li>✓</li> </ul> |
| SS04,                                   | SS05,     |             |                          |                    |            |                     |                   |                       |
| SS06,                                   | SS07      |             |                          |                    |            |                     |                   |                       |
| EP231C: Perfluoroalkyl Sulfonamides     |           |             |                          |                    |            |                     |                   | 1                     |
| HDPE (no PTFE) (EP231X)                 |           |             |                          |                    |            |                     |                   |                       |
| MW01_0.1,                               | MW01_9.0, | 23-Jan-2017 |                          |                    |            | 24-Jan-2017         | 22-Jul-2017       | <ul> <li>✓</li> </ul> |
| MW02_0.1,                               | MW03_0.1, |             |                          |                    |            |                     |                   |                       |
| SB01_0.1,                               | SB02_0.1, |             |                          |                    |            |                     |                   |                       |
| SB03_0.1,                               | SB03_1.0, |             |                          |                    |            |                     |                   |                       |
| SB04_0.15,                              | SB05_0.1, |             |                          |                    |            |                     |                   |                       |
| SS01                                    |           |             |                          |                    |            |                     |                   |                       |
| HDPE (no PTFE) (EP231X)                 |           |             |                          |                    |            |                     |                   |                       |
| SS02,                                   | SS03,     | 23-Jan-2017 |                          |                    |            | 25-Jan-2017         | 22-Jul-2017       | ✓                     |
| SS04,                                   | SS05,     |             |                          |                    |            |                     |                   |                       |
| SS06,                                   | SS07      |             |                          |                    |            |                     |                   |                       |

| Page       | : 4 of 6                   |
|------------|----------------------------|
| Work Order | : ES1701175                |
| Client     | : GHD PTY LTD              |
| Project    | 212558305 FRNSW DENILIQUIN |



| Matrix: WATER                           |           |                |                          |            | Evaluation    | : × = Holding time | breach ; ✓ = Withi | n holding time |
|-----------------------------------------|-----------|----------------|--------------------------|------------|---------------|--------------------|--------------------|----------------|
| Method                                  |           |                | Extraction / Preparation |            |               | Analysis           |                    |                |
| Container / Client Sample ID(s)         |           | Date extracted | Due for extraction       | Evaluation | Date analysed | Due for analysis   | Evaluation         |                |
| EP231D: (n:2) Fluorotelomer Sulfonic Ac | ids       |                |                          |            |               |                    |                    |                |
| HDPE (no PTFE) (EP231X)                 |           |                |                          |            |               |                    |                    |                |
| MW01_0.1,                               | MW01_9.0, | 23-Jan-2017    |                          |            |               | 24-Jan-2017        | 22-Jul-2017        | ✓              |
| MW02_0.1,                               | MW03_0.1, |                |                          |            |               |                    |                    |                |
| SB01_0.1,                               | SB02_0.1, |                |                          |            |               |                    |                    |                |
| SB03_0.1,                               | SB03_1.0, |                |                          |            |               |                    |                    |                |
| SB04_0.15,                              | SB05_0.1, |                |                          |            |               |                    |                    |                |
| SS01                                    | _         |                |                          |            |               |                    |                    |                |
| HDPE (no PTFE) (EP231X)                 |           |                |                          |            |               |                    |                    |                |
| SS02,                                   | SS03,     | 23-Jan-2017    |                          |            |               | 25-Jan-2017        | 22-Jul-2017        | 1              |
| SS04,                                   | SS05,     |                |                          |            |               |                    |                    |                |
| SS06,                                   | SS07      |                |                          |            |               |                    |                    |                |
| EP231P: PFAS Sums                       |           |                |                          |            |               |                    |                    |                |
| HDPE (no PTFE) (EP231X)                 |           |                |                          |            |               |                    |                    |                |
| MW01_0.1,                               | MW01_9.0, | 23-Jan-2017    |                          |            |               | 24-Jan-2017        | 22-Jul-2017        | ✓              |
| MW02_0.1,                               | MW03_0.1, |                |                          |            |               |                    |                    |                |
| SB01_0.1,                               | SB02_0.1, |                |                          |            |               |                    |                    |                |
| SB03_0.1,                               | SB03_1.0, |                |                          |            |               |                    |                    |                |
| SB04_0.15,                              | SB05_0.1, |                |                          |            |               |                    |                    |                |
| SS01                                    | _         |                |                          |            |               |                    |                    |                |
| HDPE (no PTFE) (EP231X)                 |           |                |                          |            |               |                    |                    |                |
| SS02,                                   | SS03,     | 23-Jan-2017    |                          |            |               | 25-Jan-2017        | 22-Jul-2017        | ✓              |
| SS04,                                   | SS05,     |                |                          |            |               |                    |                    |                |
| SS06,                                   | SS07      |                |                          |            |               |                    |                    |                |



## **Quality Control Parameter Frequency Compliance**

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

| Matrix: WATER                                        |        |    |         | Evaluatio | n: × = Quality Co | ntrol frequency r | not within specification ; $\checkmark$ = Quality Control frequency within specification. |
|------------------------------------------------------|--------|----|---------|-----------|-------------------|-------------------|-------------------------------------------------------------------------------------------|
| Quality Control Sample Type                          |        | C  | ount    |           | Rate (%)          |                   | Quality Control Specification                                                             |
| Analytical Methods                                   | Method | QC | Reaular | Actual    | Expected          | Evaluation        |                                                                                           |
| Laboratory Duplicates (DUP)                          |        |    |         |           |                   |                   |                                                                                           |
| Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS | EP231X | 3  | 22      | 13.64     | 10.00             | ✓                 | NEPM 2013 B3 & ALS QC Standard                                                            |
| Laboratory Control Samples (LCS)                     |        |    |         |           |                   |                   |                                                                                           |
| Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS | EP231X | 2  | 22      | 9.09      | 5.00              | ✓                 | NEPM 2013 B3 & ALS QC Standard                                                            |
| Method Blanks (MB)                                   |        |    |         |           |                   |                   |                                                                                           |
| Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS | EP231X | 2  | 22      | 9.09      | 5.00              | ✓                 | NEPM 2013 B3 & ALS QC Standard                                                            |
| Matrix Spikes (MS)                                   |        |    |         |           |                   |                   |                                                                                           |
| Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS | EP231X | 2  | 22      | 9.09      | 5.00              | 1                 | NEPM 2013 B3 & ALS QC Standard                                                            |



## **Brief Method Summaries**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

| Analytical Methods                                      | Method   | Matrix | Method Descriptions                                                                                                                                                                                                                                          |
|---------------------------------------------------------|----------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Per- and Polyfluoroalkyl Substances<br>(PFAS) by LCMSMS | EP231X   | SOIL   | In house: Direct injection analysis of fresh waters after dilution (1:1) with methanol. Analysis by LC-Electrospray-MS-MS, Negative Mode using MRM. PFOS is quantified using a certified, traceable standard consisting of linear and branched PFOS isomers. |
| Preparation Methods                                     | Method   | Matrix | Method Descriptions                                                                                                                                                                                                                                          |
| Deionised Water Leach                                   | EN60-DIa | SOIL   | In house QWI-EN/60 referenced to AS4439.3 Preparation of Leachates                                                                                                                                                                                           |

| CHAIN OF CUSTODY RECORD                         | 0                                      | Melbourne Office Address                                                                                                                  | Completion Date / Turnaround             | Turnaround Quote #/ GHD Reference | telerence Page L of                                                                                                                                  |
|-------------------------------------------------|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| GHD                                             | GHD                                    | 39                                                                                                                                        |                                          | da. cl                            | 2                                                                                                                                                    |
| Job Number                                      | GHD Contact                            | Laboratory:<br>Addrace:                                                                                                                   | ALS Spr.                                 | igrale                            | COURIER AND LABORATORY INSTRUCTIONS:<br>Sign white copy on receipt and release of samples.<br>Samples are to be delivered to the Laboratory Address. |
|                                                 |                                        |                                                                                                                                           |                                          |                                   | On receipt of samples, the laboratory contact<br>to sign while copy and faxlemail to GHD Contact.                                                    |
| FRASH DESAM                                     | LIQUIN                                 | Laboratory Contact:<br>Container Ana                                                                                                      | Analyses Regulred                        | Celenne .                         | On completion of analyses please return white copy with results.                                                                                     |
| Brn Andreson                                    | Sid Paleri                             | Type                                                                                                                                      |                                          |                                   | Pink copy is returned to the sampler once the courier has signed for the samples.                                                                    |
| GHD PM email<br>Sen, and i son & ghd. Com       | GHD Contact email<br>S-d. polo. Eg Ld. |                                                                                                                                           | *<br>2 2 1<br>2<br>3                     | 54                                | E-mail results to the GHD Project Manager<br>and GHD Contact with the GHD Job Number in the e-mail subject line.                                     |
| Sample I.D.                                     | Date Time                              | nL)<br>glass bo<br>wottle<br>B: bag<br>water                                                                                              | 5 4                                      | 5                                 | Note email format: firstname.lastname@ghd.com<br>Results to be provided in ESDAT compatible format                                                   |
|                                                 | atizoqmoJ<br>Sample<br>Jame2           | Sample Matu<br>Si Soli St. 5<br>W: Water A:<br>GW: Grounder<br>J: soli Jar F<br>V: vial G:<br>P: plastic bi<br>Number<br>Number<br>Number | 1010<br>1010<br>102<br>102<br>102<br>105 | Hd<br>502<br>10114<br>0 Гаш       | SAMPLE COMMENTS                                                                                                                                      |
| 5501                                            |                                        | 3, 8                                                                                                                                      | XXXXX                                    |                                   |                                                                                                                                                      |
| 502                                             |                                        | XIII                                                                                                                                      | XXXXX                                    |                                   |                                                                                                                                                      |
|                                                 |                                        | X                                                                                                                                         | XXXXX                                    |                                   | Environmental Division                                                                                                                               |
| 5504                                            |                                        | ×                                                                                                                                         | XXXXX                                    |                                   | Work Order Reference                                                                                                                                 |
| 5505                                            |                                        | ×                                                                                                                                         | < X X X X X X                            |                                   | EM1614608                                                                                                                                            |
| Ssol                                            |                                        | X                                                                                                                                         | XXXXX                                    |                                   |                                                                                                                                                      |
| 5507                                            |                                        | V V V X                                                                                                                                   | XXXXXX                                   |                                   |                                                                                                                                                      |
| SEOR SWOI                                       |                                        | WPZX                                                                                                                                      |                                          | XXXXX                             |                                                                                                                                                      |
| \$ SWOZ                                         |                                        | XIII                                                                                                                                      |                                          | X X X X                           |                                                                                                                                                      |
| Swo 3                                           |                                        | ×                                                                                                                                         |                                          | X X X X                           | Telephone: + 61-3-8549 9600                                                                                                                          |
| FDOI                                            |                                        | ×                                                                                                                                         |                                          | Wild A X                          |                                                                                                                                                      |
| F801                                            |                                        | XNNX                                                                                                                                      |                                          | AND X X A                         | > Please find to Ediction D                                                                                                                          |
| 5802.0.1                                        |                                        | S 1,83 X                                                                                                                                  | XXXXX                                    |                                   |                                                                                                                                                      |
| 5302 0.5                                        |                                        | -                                                                                                                                         |                                          |                                   | ×                                                                                                                                                    |
| 5802-1.0                                        |                                        | X                                                                                                                                         | XXXX                                     |                                   |                                                                                                                                                      |
| 5363-0.1                                        |                                        | -                                                                                                                                         | ××××××××××××××××××××××××××××××××××××××   |                                   |                                                                                                                                                      |
| 5803-0.5                                        | ~                                      | V V V                                                                                                                                     |                                          |                                   | ×                                                                                                                                                    |
| TOTAL NUMBER OF SAMPLES                         |                                        | GENERAL COMMENTS:                                                                                                                         | De Metals : 8 m                          | alals (Standa d) + Al.            | K, Si non in the by                                                                                                                                  |
| TOTAL NUMBER OF ESKIES:                         |                                        |                                                                                                                                           |                                          |                                   | 19/1 10 4 hours                                                                                                                                      |
| SAMPLES/ESKY CHILLED? Y / N<br>CUSTODY DETAILS: | 9 × 10                                 |                                                                                                                                           |                                          |                                   | the Della                                                                                                                                            |
|                                                 | Name                                   | Dat                                                                                                                                       | Date/Time Received                       |                                   | Date/Time Relinquished                                                                                                                               |
| SAMPLER                                         | Sid Patris                             | 2                                                                                                                                         | 29/11/16 - 301                           | A                                 | 02/12/16 & MACO The                                                                                                                                  |
| GHD SERVICE CENTRE                              | CINYASTRA                              | RA(11 ) ×1                                                                                                                                | 11/11/ ×1/01/                            | Jan                               | MACH < E:71 01/7.1/70                                                                                                                                |
| COURIER                                         | 14 -00                                 | 14/                                                                                                                                       |                                          | 1 ( ~ ~ 0                         |                                                                                                                                                      |
| LABORATORY                                      | ANNUX -                                | (1-1)                                                                                                                                     | -11-1                                    |                                   | and the star since so                                                                                                                                |

| CHAIN OF CUSTODY RECORD   |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Methonima Office Addrass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                   | mo                   | Comoletion Date / Turnaround | rmaround   |        | Quote # / GHD Reference | ence         |                                                                                                                 | Page 2 of 3                                                                                                                                                     |
|---------------------------|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|----------------------|------------------------------|------------|--------|-------------------------|--------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GHD                       |                          | (HD)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Telephone: 613 8687 8000 Fax: 613 8687 8111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | sibourne 3000<br>10 Fax: 613 8687 |                      | Planda                       | d (sde     | $\sum$ |                         |              |                                                                                                                 | 3                                                                                                                                                               |
| Job Number<br>212 55 305  | GHD Contact<br>Sid Paler |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Laboratory:<br>Address:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                   | A                    | d5 52                        | " my rale  |        |                         |              | <u>8 8 8</u>                                                                                                    | COURIER AND LABORATORY INSTRUCTIONS:<br>Sign white copy on receipt and release of samples.<br>Samples are to be delivered to the Laboratory Address.            |
| Froject<br>FRNSN - DENIL  | 1.6000                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Laboratory Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ntact:                            | Sh.                  | in Jey                       | I cloudu.  |        |                         |              |                                                                                                                 | On receipt of samples, the laboratory contact<br>to sign white copy and fax/email to GHD contact.<br>On completion of analyses please return white              |
| GHD Project Manager       | GHD Contact              | 2 x-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Container A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Analyse                           | Analyses Required    | •                            |            |        |                         |              | 8 12 8                                                                                                          | copy with results.<br>Pink copy is returned to the sampler once the<br>courier has signed for the samples.                                                      |
| i G                       | GHD Contact email        | eghd. com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <u>ب</u> م به تر •                | 74                   | × 51<br>22 15                |            |        |                         |              | 3 <u>1</u> 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                  | E-mail results to the GHD Project Manager<br>and GHD Contact with the GHD Job Number in the e-mail subject line.<br>MAA email format Firstname lastname@old.com |
| Sample I.D.               | Date Time                | xi'teN<br>epbul2 :L:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | c potile<br>C: glass bi<br>B: bag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                   | 77                   | 4.01                         |            |        |                         |              | 2<br>(7)                                                                                                        | Results to be provided in ESDAT compatible format                                                                                                               |
|                           |                          | Sample<br>Sample<br>S:Soil S<br>S:Soil | GW: Groil ja                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                   | 04                   | Ð                            |            |        |                         |              | 0++                                                                                                             | SAMPLE COMMENTS                                                                                                                                                 |
| 5804-5.0                  | 30/11/16                 | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | J, B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                   |                      |                              |            |        |                         |              | ×                                                                                                               |                                                                                                                                                                 |
| 1.0 10MW                  | Longitz                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | X<br>X                            | ×                    | ۶<br>×                       |            |        |                         |              |                                                                                                                 |                                                                                                                                                                 |
| 10 M 01 - 1.0             |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |                      |                              |            |        |                         |              | ×                                                                                                               |                                                                                                                                                                 |
| MW08-9.0                  | 2                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | X                                 | X                    | X                            |            |        |                         |              |                                                                                                                 |                                                                                                                                                                 |
| 1.0220 MW                 |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ×                                 | XX                   | XX                           |            |        |                         |              | 1                                                                                                               |                                                                                                                                                                 |
| M.M.O.2.2.1.0             |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |                      |                              |            |        |                         |              | ×                                                                                                               |                                                                                                                                                                 |
| MW02-13.5                 |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ×<br>×                            | ×                    | X                            |            |        |                         |              |                                                                                                                 |                                                                                                                                                                 |
| MW03_0.1                  |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ×<br>×                            | ×                    | X<br>X                       |            |        |                         |              |                                                                                                                 |                                                                                                                                                                 |
| MW03_1.0                  |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ×                                 | X<br>X               | ×<br>×                       |            |        |                         |              |                                                                                                                 |                                                                                                                                                                 |
| FD02                      |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | X                                 |                      | ×                            |            |        |                         |              |                                                                                                                 |                                                                                                                                                                 |
| F003                      |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | X<br>Y                            |                      | ×                            |            |        |                         |              | r                                                                                                               | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                           |
| F502                      |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ×<br>×                            |                      | ×                            |            |        |                         |              | TR.                                                                                                             | allest tornered to buches.                                                                                                                                      |
| FSOZ                      | V                        | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | X                                 | ×                    | ×                            |            |        |                         |              |                                                                                                                 |                                                                                                                                                                 |
|                           |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |                      |                              |            |        |                         |              |                                                                                                                 |                                                                                                                                                                 |
|                           |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |                      |                              |            |        |                         |              |                                                                                                                 |                                                                                                                                                                 |
|                           |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |                      |                              |            |        |                         |              |                                                                                                                 |                                                                                                                                                                 |
| TOTAL NUMBER OF SAMPLES:  |                          | GENERAL (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | GENERAL COMMENTS:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | + Mota                            |                      | Emila                        | 15 1540.00 | XXCP   | 5, 51, 1                |              | 0.0                                                                                                             | ţ                                                                                                                                                               |
| TOTAL NUMBER OF ESKIES:   | 9                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |                      |                              |            |        |                         |              | 22                                                                                                              | pulled in oches the                                                                                                                                             |
| SAMPLES/ESKY CHILLED? Y/N | NI X                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | A DESCRIPTION OF THE OWNER | And the state of the state        | States of the second |                              |            |        | AND AND AND A           |              | Supersonal S | A State                                                                                                                                                         |
| LUSION DETAILS.           | Name                     | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Date/Tim                          | Date/Time Received   |                              |            |        |                         | Time Relinqu | 8                                                                                                               | the second                                                                                                                                                      |
| SAMPLER                   | Sid Pale                 | T.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 29/11                             | 1/16 -               | - Julos -                    | 16         |        |                         | 12/12        | 16 (0)                                                                                                          | 1140                                                                                                                                                            |
| GHD SERVICE CENTRE        | CJHURST                  | t KC KH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2/1                               | 9/10                 | 11:40                        | :40anz     |        | _                       | 12/ 10/      | 11                                                                                                              |                                                                                                                                                                 |
| COURIER                   | 6                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 les                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | _                                 |                      |                              | (4)-111    |        |                         |              | 5                                                                                                               |                                                                                                                                                                 |
| LABORATORY                | rar r                    | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 15th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                   | 11,                  | ر                            | ) > ナー     |        |                         |              |                                                                                                                 |                                                                                                                                                                 |



mgt

GHD Melbourne Level 8, 180 Lonsdale St Melbourne VIC 3000





## Certificate of Analysis

NATA Accredited Accreditation Number 1261 Site Number 1254

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention:

Ben Anderson

Report Project name Project ID Received Date 526459-S PRNSW-DENILQUIN 212558305 Dec 05, 2016

| Client Sample ID                                                    |       |       | FS02         | FS03         |
|---------------------------------------------------------------------|-------|-------|--------------|--------------|
| Sample Matrix                                                       |       |       | Soil         | Soil         |
| Eurofins   mgt Sample No.                                           |       |       | M16-De05163  | M16-De05164  |
| Date Sampled                                                        |       |       | Nov 30, 2016 | Nov 30, 2016 |
|                                                                     |       | Linit | 100 30, 2010 | 100 30, 2010 |
| Test/Reference<br>Per- and Polyfluorinated Alkyl Substances (PFASs) | LOR   | Unit  |              |              |
| Perfluorobutanesulfonic acid (PFBS)                                 | 0.005 | mg/kg | < 0.005      | 0.012        |
| Perfluorobutanoic acid (PFBA)                                       | 0.005 | mg/kg | < 0.005      | < 0.005      |
| Perfluorohexanesulfonic acid (PFHxS)                                | 0.005 | mg/kg | 0.011        | < 0.005      |
| Perfluorooctanesulfonic acid (PFOS)                                 | 0.005 | mg/kg | 0.011        | < 0.005      |
| Perfluorodecanesulfonic acid (PFDS)                                 | 0.005 | mg/kg | < 0.005      | < 0.005      |
| Perfluoropentanoic acid (PFPeA)                                     | 0.005 | mg/kg | < 0.005      | < 0.005      |
| Perfluorohexanoic acid (PFHxA)                                      | 0.005 | mg/kg | 0.015        | 0.033        |
| Perfluoroheptanoic acid (PFHpA)                                     | 0.005 | mg/kg | < 0.005      | < 0.005      |
| Perfluorooctanoic acid (PFOA)                                       | 0.005 | mg/kg | < 0.005      | < 0.005      |
| Perfluorononanoic acid (PFNA)                                       | 0.005 | mg/kg | < 0.005      | < 0.005      |
| Perfluorodecanoic acid (PFDA)                                       | 0.005 | mg/kg | < 0.005      | < 0.005      |
| Perfluoroundecanoic acid (PFUA)                                     | 0.005 | mg/kg | < 0.005      | < 0.005      |
| Perfluorododecanoic acid (PFDoA)                                    | 0.005 | mg/kg | < 0.005      | < 0.005      |
| Perfluorotridecanoic acid (PFTDOA)                                  | 0.005 | mg/kg | < 0.005      | < 0.005      |
| Perfluorotetradecanoic acid (PFTeDA)                                | 0.005 | mg/kg | < 0.005      | < 0.005      |
| Perfluorooctanesulfonamide (PFOSA)                                  | 0.003 | mg/kg | < 0.01       | < 0.003      |
| N-ethyl-perfluorooctanesulfonamidoacetic acid                       |       |       |              |              |
| (NEtFOSAA)                                                          | 0.01  | mg/kg | < 0.01       | < 0.01       |
| N-methyl-perfluorooctanesulfonamidoacetic acid (NMeFOSAA)           | 0.01  | mg/kg | < 0.01       | < 0.01       |
| 1H.1H.2H.2H-perfluorohexanesulfonic acid (4:2 FTS)                  | 0.005 | mg/kg | < 0.005      | < 0.005      |
| 1H.1H.2H.2H-perfluorooctanesulfonic acid (6:2 FTS)                  | 0.01  | mg/kg | < 0.01       | < 0.01       |
| 1H.1H.2H.2H-perfluorodecanesulfonic acid (8:2 FTS)                  | 0.005 | mg/kg | < 0.005      | < 0.005      |
| d5-n-EtFOSAA (surr.)                                                | 1     | %     | 85           | 81           |
| 13C-PFHxA (surr.)                                                   | 1     | %     | 62           | 52           |
| 13C8-PFOS (surr.)                                                   | 1     | %     | 63           | 66           |
|                                                                     |       |       |              |              |
| Total Organic Carbon                                                | 0.1   | %     | 0.2          | < 0.1        |
| % Moisture                                                          | 1     | %     | 15           | 16           |
| Alkali Metals                                                       | 1     |       |              |              |
| Potassium                                                           | 5     | mg/kg | 3000         | 2600         |
| Heavy Metals                                                        | 1     |       |              |              |
| Arsenic                                                             | 2     | mg/kg | 4.5          | 4.4          |
| Cadmium                                                             | 0.4   | mg/kg | < 0.4        | < 0.4        |
| Chromium                                                            | 5     | mg/kg | 32           | 25           |
| Copper                                                              | 5     | mg/kg | 19           | 14           |



| Client Sample ID<br>Sample Matrix<br>Eurofins   mgt Sample No.<br>Date Sampled |     |       | FS02<br>Soil<br>M16-De05163<br>Nov 30, 2016 | FS03<br>Soil<br>M16-De05164<br>Nov 30, 2016 |
|--------------------------------------------------------------------------------|-----|-------|---------------------------------------------|---------------------------------------------|
| Test/Reference                                                                 | LOR | Unit  |                                             |                                             |
| Heavy Metals                                                                   |     |       |                                             |                                             |
| Lead                                                                           | 5   | mg/kg | 26                                          | 13                                          |
| Mercury                                                                        | 0.1 | mg/kg | < 0.1                                       | < 0.1                                       |
| Nickel                                                                         | 5   | mg/kg | 14                                          | 14                                          |
| Zinc                                                                           | 5   | mg/kg | 46                                          | 41                                          |



#### Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

| Description                                                                  | Testing Site | Extracted    | Holding Time |
|------------------------------------------------------------------------------|--------------|--------------|--------------|
| Per- and Polyfluorinated Alkyl Substances (PFASs)                            | Brisbane     | Dec 08, 2016 | 180 Day      |
| - Method: LTM-ORG-2100 Per- and Polyfluorinated Alkyl Substances by LC-MS/MS |              |              |              |
| Total Organic Carbon                                                         | Melbourne    | Dec 07, 2016 | 28 Day       |
| - Method: APHA 5310B Total Organic Carbon                                    |              |              |              |
| Alkali Metals                                                                | Melbourne    | Dec 06, 2016 | 180 Day      |
| - Method: USEPA 6010 Alkali Metals                                           |              |              |              |
| Metals M8                                                                    | Melbourne    | Dec 06, 2016 | 28 Days      |
| - Method: LTM-MET-3030 by ICP-OES (hydride ICP-OES for Mercury)              |              |              |              |
| % Moisture                                                                   | Melbourne    | Dec 06, 2016 | 14 Day       |
| - Method: LTM-GEN-7080 Moisture                                              |              |              |              |

|      | 🔅 eur                    | ofins                                                | mgt              |        | ABN– 50 005 (<br>e.mail : Enviro<br>web : www.eur | Sales@ | eurofins  | s.com                         | 2<br>0<br>P<br>N     | )akleigh<br>hone : ·<br>IATA # | ston Tov<br>VIC 310<br>+61 3 85                      | 66<br>64 5000 | 16 Mars Road Murarrie QLD 4172 Kewdale WA 6105                                      |
|------|--------------------------|------------------------------------------------------|------------------|--------|---------------------------------------------------|--------|-----------|-------------------------------|----------------------|--------------------------------|------------------------------------------------------|---------------|-------------------------------------------------------------------------------------|
| Ad   | ompany Name:<br>Idress:  | GHD Pty Ltd<br>Level 8, 180<br>Melbourne<br>VIC 3000 | Lonsdale St      |        |                                                   |        | Re        | der N<br>port #<br>one:<br>x: |                      | 8                              | 26459<br>687 8<br>687 8                              | 000           | Received:Dec 5, 2016 3:23 PMDue:Dec 12, 2016Priority:5 DayContact Name:Ben Anderson |
|      | oject Name:<br>oject ID: | PRNSW-DEI<br>212558305                               | NILQUIN          |        |                                                   |        |           |                               |                      |                                |                                                      |               | Eurofins   mgt Analytical Services Manager : Mary Makarios                          |
|      |                          | Sa                                                   | mple Detail      |        |                                                   | рН     | Potassium | Total Dissolved Solids        | Total Organic Carbon | Metals M8                      | Per- and Polyfluorinated Alkyl Substances<br>(PFASs) | Moisture Set  |                                                                                     |
| Melk | bourne Laborato          | ory - NATA Site                                      | # 1254 & 142     | 71     |                                                   | х      | х         | Х                             | Х                    | Х                              |                                                      | Х             |                                                                                     |
|      | ney Laboratory           |                                                      |                  |        |                                                   |        |           |                               |                      |                                |                                                      |               |                                                                                     |
|      | bane Laborator           |                                                      |                  |        |                                                   |        |           |                               |                      |                                | X                                                    |               |                                                                                     |
|      | h Laboratory - N         |                                                      | 17               |        |                                                   |        |           |                               |                      |                                |                                                      |               |                                                                                     |
|      | ernal Laboratory         |                                                      |                  |        |                                                   |        |           |                               |                      |                                |                                                      |               |                                                                                     |
| No   | Sample ID                | Sample Date                                          | Sampling<br>Time | Matrix | LAB ID                                            |        |           |                               |                      |                                |                                                      |               |                                                                                     |
| 1    | FS01                     | Nov 29, 2016                                         |                  | Water  | M16-De05162                                       | х      |           | х                             |                      |                                | Х                                                    |               |                                                                                     |
| 2    | FS02                     | Nov 30, 2016                                         |                  | Soil   | M16-De05163                                       |        | х         |                               | х                    | х                              | Х                                                    | Х             |                                                                                     |
| 3    | FS03                     | Nov 30, 2016                                         |                  | Soil   | M16-De05164                                       |        | х         |                               | х                    | х                              | х                                                    | Х             |                                                                                     |
| Test | t Counts                 |                                                      |                  |        |                                                   | 1      | 2         | 1                             | 2                    | 2                              | 3                                                    | 2             |                                                                                     |



## mgt

#### Internal Quality Control Review and Glossary

#### General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 4. Results are uncorrected for matrix spikes or surrogate recoveries.
- 5. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 6. Samples were analysed on an 'as received' basis. 7. This report replaces any interim results previously issued.

#### **Holding Times**

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Advice.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported. Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

\*\*NOTE: pH duplicates are reported as a range NOT as RPD

#### Units

 mg/kg: milligrams per Kilogram
 mg/l: milligrams per litre

 ug/l: micrograms per litre
 ppm: Parts per million

 ppb: Parts per billion
 %: Percentage

 org/100ml: Organisms per 100 millilitres
 NTU: Nephelometric Turbidity Units

 MPN/100mL: Most Probable Number of organisms per 100 millilitres
 Hercentage

| _ |            |      |   |
|---|------------|------|---|
| т | ٥r         | me   |   |
|   | <b>U</b> I | 1113 | • |

| Dry              | Where a moisture has been determined on a solid sample the result is expressed on a dry basis.                                                                    |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| LOR              | Limit of Reporting.                                                                                                                                               |
| SPIKE            | Addition of the analyte to the sample and reported as percentage recovery.                                                                                        |
| RPD              | Relative Percent Difference between two Duplicate pieces of analysis.                                                                                             |
| LCS              | Laboratory Control Sample - reported as percent recovery                                                                                                          |
| CRM              | Certified Reference Material - reported as percent recovery                                                                                                       |
| Method Blank     | In the case of solid samples these are performed on laboratory certified clean sands.                                                                             |
|                  | In the case of water samples these are performed on de-ionised water.                                                                                             |
| Surr - Surrogate | The addition of a like compound to the analyte target and reported as percentage recovery.                                                                        |
| Duplicate        | A second piece of analysis from the same sample and reported in the same units as the result to show comparison.                                                  |
| Batch Duplicate  | A second piece of analysis from a sample outside of the clients batch of samples but run within the laboratory batch of analysis.                                 |
| Batch SPIKE      | Spike recovery reported on a sample from outside of the clients batch of samples but run within the laboratory batch of analysis.                                 |
| USEPA            | United States Environmental Protection Agency                                                                                                                     |
| APHA             | American Public Health Association                                                                                                                                |
| TCLP             | Toxicity Characteristic Leaching Procedure                                                                                                                        |
| COC              | Chain of Custody                                                                                                                                                  |
| SRA              | Sample Receipt Advice                                                                                                                                             |
| CP               | Client Parent - QC was performed on samples pertaining to this report                                                                                             |
| NCP              | Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within |
| TEQ              | Toxic Equivalency Quotient                                                                                                                                        |
|                  |                                                                                                                                                                   |

#### **QC** - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 50-150%-Phenols & PFASs 20-130%

#### **QC Data General Comments**

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " --" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.



### **Quality Control Results**

| Test                                                      | Units   | Result 1 |     | Acceptance<br>Limits | Pass<br>Limits | Qualifying<br>Code |
|-----------------------------------------------------------|---------|----------|-----|----------------------|----------------|--------------------|
| Method Blank                                              | 1       |          |     | -                    |                |                    |
| Per- and Polyfluorinated Alkyl Substances (PFASs)         |         |          |     |                      |                |                    |
| Perfluorobutanesulfonic acid (PFBS)                       | mg/kg   | < 0.005  |     | 0.005                | Pass           |                    |
| Perfluorobutanoic acid (PFBA)                             | mg/kg   | < 0.005  |     | 0.005                | Pass           |                    |
| Perfluorohexanesulfonic acid (PFHxS)                      | mg/kg   | < 0.005  |     | 0.005                | Pass           |                    |
| Perfluorooctanesulfonic acid (PFOS)                       | mg/kg   | < 0.005  |     | 0.005                | Pass           |                    |
| Perfluorodecanesulfonic acid (PFDS)                       | mg/kg   | < 0.005  |     | 0.005                | Pass           |                    |
| Perfluoropentanoic acid (PFPeA)                           | mg/kg   | < 0.005  |     | 0.005                | Pass           |                    |
| Perfluorohexanoic acid (PFHxA)                            | mg/kg   | < 0.005  |     | 0.005                | Pass           |                    |
| Perfluoroheptanoic acid (PFHpA)                           | mg/kg   | < 0.005  |     | 0.005                | Pass           |                    |
| Perfluorooctanoic acid (PFOA)                             | mg/kg   | < 0.005  |     | 0.005                | Pass           |                    |
| Perfluorononanoic acid (PFNA)                             | mg/kg   | < 0.005  |     | 0.005                | Pass           |                    |
| Perfluorodecanoic acid (PFDA)                             | mg/kg   | < 0.005  |     | 0.005                | Pass           |                    |
| Perfluoroundecanoic acid (PFUnA)                          | mg/kg   | < 0.005  |     | 0.005                | Pass           |                    |
| Perfluorododecanoic acid (PFDoA)                          | mg/kg   | < 0.005  |     | 0.005                | Pass           |                    |
| Perfluorotridecanoic acid (PFTrDA)                        | mg/kg   | < 0.005  |     | 0.005                | Pass           |                    |
| Perfluorotetradecanoic acid (PFTeDA)                      | mg/kg   | < 0.005  |     | 0.005                | Pass           |                    |
| Perfluorooctanesulfonamide (PFOSA)                        | mg/kg   | < 0.01   |     | 0.01                 | Pass           |                    |
| N-ethyl-perfluorooctanesulfonamidoacetic acid (NEtFOSAA)  | mg/kg   | < 0.01   |     | 0.01                 | Pass           |                    |
| N-methyl-perfluorooctanesulfonamidoacetic acid (NMeFOSAA) | mg/kg   | < 0.01   |     | 0.01                 | Pass           |                    |
| 1H.1H.2H.2H-perfluorohexanesulfonic acid (4:2 FTS)        | mg/kg   | < 0.005  |     | 0.005                | Pass           |                    |
| 1H.1H.2H.2H-perfluorooctanesulfonic acid (6:2 FTS)        | mg/kg   | < 0.01   |     | 0.00                 | Pass           |                    |
| 1H.1H.2H.2H-perfluorodecanesulfonic acid (8:2 FTS)        | mg/kg   | < 0.005  |     | 0.005                | Pass           |                    |
| Method Blank                                              | mg/ng   | < 0.000  |     | 0.000                | 1 400          |                    |
| Total Organic Carbon                                      | %       | < 0.1    |     | 0.1                  | Pass           |                    |
| Method Blank                                              | 70      | <u> </u> |     | 0.1                  | 1 400          |                    |
| Heavy Metals                                              |         |          |     |                      |                |                    |
| Arsenic                                                   | mg/kg   | < 2      |     | 2                    | Pass           |                    |
| Cadmium                                                   | mg/kg   | < 0.4    |     | 0.4                  | Pass           |                    |
| Chromium                                                  | mg/kg   | < 5      |     | 5                    | Pass           |                    |
| Copper                                                    | mg/kg   | < 5      |     | 5                    | Pass           |                    |
| Lead                                                      | mg/kg   | < 5      |     | 5                    | Pass           |                    |
| Mercury                                                   | mg/kg   | < 0.1    |     | 0.1                  | Pass           |                    |
| Nickel                                                    | mg/kg   | < 5      |     | 5                    | Pass           |                    |
| Zinc                                                      | mg/kg   | < 5      |     | 5                    | Pass           |                    |
| LCS - % Recovery                                          | iiig/kg |          |     | 5                    | 1 433          |                    |
| Per- and Polyfluorinated Alkyl Substances (PFASs)         |         |          |     |                      |                |                    |
| Perfluorobutanesulfonic acid (PFBS)                       | %       | 81       |     | 50-150               | Pass           |                    |
| Perfluorobutanoic acid (PFBA)                             | %       | 104      |     | 50-150               | Pass           |                    |
| Perfluorohexanesulfonic acid (PFHxS)                      | %       | 85       |     | 50-150               | Pass           |                    |
| Perfluorooctanesulfonic acid (PFOS)                       | %       | 113      |     | 50-150               | Pass           |                    |
| Perfluorodecanesulfonic acid (PFDS)                       | %       | 83       |     | 50-150               | Pass           |                    |
| Perfluoropentanoic acid (PFPeA)                           | %       | 68       |     | 50-150               | Pass           |                    |
| Perfluorohexanoic acid (PFHxA)                            | %       | 124      |     | 50-150               | Pass           |                    |
| Perfluoroheptanoic acid (PFHpA)                           | %       | 78       |     | 50-150               | Pass           |                    |
| Perfluorooctanoic acid (PFOA)                             | %       | 116      |     | 50-150               | Pass           |                    |
| Perfluorononanoic acid (PFNA)                             | %       | 84       |     | 50-150               | Pass           |                    |
| Perfluorodecanoic acid (PFDA)                             | %       | 71       |     | 50-150               | Pass           |                    |
| Perfluoroundecanoic acid (PFUnA)                          | %       | 73       |     | 50-150               | Pass           |                    |
| Perfluorododecanoic acid (PFDoA)                          | %       | 81       |     | 50-150               | Pass           |                    |
| Perfluorotridecanoic acid (PFTrDA)                        | %       | 83       |     | 50-150               | Pass           |                    |
|                                                           | 1 70    | . 00     | 1 1 | 1 00-100             | 1 033          | 1                  |



| Test                                                            |                    |              | Units | Result 1 |       | Acceptance<br>Limits | Pass<br>Limits | Qualifying<br>Code |
|-----------------------------------------------------------------|--------------------|--------------|-------|----------|-------|----------------------|----------------|--------------------|
| Perfluorooctanesulfonamide (PFOS/                               | A)                 |              | %     | 74       |       | 50-150               | Pass           |                    |
| N-ethyl-perfluorooctanesulfonamidoa                             | acetic acid (NEtFO | SAA)         | %     | 92       |       | 50-150               | Pass           |                    |
| N-methyl-perfluorooctanesulfonamid                              | loacetic acid (NMe | FOSAA)       | %     | 84       |       | 50-150               | Pass           |                    |
| 1H.1H.2H.2H-perfluorohexanesulfor                               | ic acid (4:2 FTS)  |              | %     | 86       |       | 50-150               | Pass           |                    |
| 1H.1H.2H.2H-perfluorooctanesulfoni                              | ic acid (6:2 FTS)  |              | %     | 116      |       | 50-150               | Pass           |                    |
| 1H.1H.2H.2H-perfluorodecanesulfor                               | ic acid (8:2 FTS)  |              | %     | 91       |       | 50-150               | Pass           |                    |
| LCS - % Recovery                                                |                    |              |       | -        |       | -                    |                |                    |
| Heavy Metals                                                    |                    |              |       |          |       |                      |                |                    |
| Arsenic                                                         |                    |              | %     | 102      |       | 80-120               | Pass           |                    |
| Cadmium                                                         |                    |              | %     | 102      |       | 80-120               | Pass           |                    |
| Chromium                                                        |                    |              | %     | 106      |       | 80-120               | Pass           |                    |
| Copper                                                          |                    |              | %     | 108      |       | 80-120               | Pass           |                    |
| Lead                                                            |                    |              | %     | 103      |       | 80-120               | Pass           |                    |
| Mercury                                                         |                    |              | %     | 93       |       | 75-125               | Pass           |                    |
| Nickel                                                          |                    |              | %     | 106      |       | 80-120               | Pass           |                    |
| Zinc                                                            |                    |              | %     | 108      |       | 80-120               | Pass           |                    |
| Test                                                            | Lab Sample ID      | QA<br>Source | Units | Result 1 |       | Acceptance<br>Limits | Pass<br>Limits | Qualifying<br>Code |
| Spike - % Recovery                                              |                    |              |       |          | т – т | 1                    |                |                    |
| Heavy Metals                                                    |                    | 1            |       | Result 1 |       |                      |                |                    |
| Arsenic                                                         | M16-De03622        | NCP          | %     | 102      |       | 75-125               | Pass           |                    |
| Cadmium                                                         | M16-De03622        | NCP          | %     | 101      |       | 75-125               | Pass           |                    |
| Chromium                                                        | M16-De03622        | NCP          | %     | 99       |       | 75-125               | Pass           |                    |
| Copper                                                          | M16-De03622        | NCP          | %     | 102      |       | 75-125               | Pass           |                    |
| Lead                                                            | M16-De03622        | NCP          | %     | 75       |       | 75-125               | Pass           |                    |
| Mercury                                                         | M16-De03622        | NCP          | %     | 85       |       | 70-130               | Pass           |                    |
| Nickel                                                          | M16-De03622        | NCP          | %     | 98       |       | 75-125               | Pass           |                    |
| Zinc                                                            | M16-De03611        | NCP          | %     | 51       |       | 75-125               | Fail           | Q08                |
| Spike - % Recovery                                              |                    |              |       |          | т – т | T                    |                |                    |
| Per- and Polyfluorinated Alkyl Sub                              | stances (PFASs)    |              |       | Result 1 |       |                      |                |                    |
| Perfluorobutanesulfonic acid (PFBS)                             | M16-De05164        | СР           | %     | 76       |       | 50-150               | Pass           |                    |
| Perfluorobutanoic acid (PFBA)                                   | M16-De05164        | CP           | %     | 93       |       | 50-150               | Pass           |                    |
| Perfluorohexanesulfonic acid<br>(PFHxS)                         | M16-De05164        | СР           | %     | 73       |       | 50-150               | Pass           |                    |
| Perfluorooctanesulfonic acid (PFOS)                             | M16-De05164        | СР           | %     | 119      |       | 50-150               | Pass           |                    |
| Perfluorodecanesulfonic acid (PFDS)                             | M16-De05164        | СР           | %     | 72       |       | 50-150               | Pass           |                    |
| Perfluoropentanoic acid (PFPeA)                                 | M16-De05164        | CP           | %     | 50       |       | 50-150               | Pass           |                    |
| Perfluorohexanoic acid (PFHxA)                                  | M16-De05164        | CP           | %     | 117      |       | 50-150               | Pass           |                    |
| Perfluoroheptanoic acid (PFHpA)                                 | M16-De05164        | CP           | %     | 72       |       | 50-150               | Pass           |                    |
| Perfluorooctanoic acid (PFOA)                                   | M16-De05164        | CP           | %     | 111      |       | 50-150               | Pass           |                    |
| Perfluorononanoic acid (PFNA)                                   | M16-De05164        | CP           | %     | 82       |       | 50-150               | Pass           |                    |
| Perfluorodecanoic acid (PFDA)                                   | M16-De05164        | CP           | %     | 75       |       | 50-150               | Pass           |                    |
| Perfluoroundecanoic acid (PFUnA)                                | M16-De05164        | CP           | %     | 75       |       | 50-150               | Pass           |                    |
| Perfluorododecanoic acid (PFDoA)                                | M16-De05164        | CP           | %     | 82       |       | 50-150               | Pass           |                    |
| Perfluorotridecanoic acid (PFTrDA)                              | M16-De05164        | CP           | %     | 86       |       | 50-150               | Pass           |                    |
| Perfluorotetradecanoic acid<br>(PFTeDA)                         | M16-De05164        | СР           | %     | 87       |       | 50-150               | Pass           |                    |
| Perfluorooctanesulfonamide<br>(PFOSA)                           | M16-De05164        | СР           | %     | 70       |       | 50-150               | Pass           |                    |
| N-ethyl-<br>perfluorooctanesulfonamidoacetic<br>acid (NEtFOSAA) | M16-De05164        | СР           | %     | 90       |       | 50-150               | Pass           |                    |



| Test                                                             | Lab Sample ID   | QA<br>Source | Units | Result 1 |          |     | Acceptance<br>Limits | Pass<br>Limits | Qualifying<br>Code |
|------------------------------------------------------------------|-----------------|--------------|-------|----------|----------|-----|----------------------|----------------|--------------------|
| N-methyl-<br>perfluorooctanesulfonamidoacetic<br>acid (NMeFOSAA) | M16-De05164     | СР           | %     | 78       |          |     | 50-150               | Pass           |                    |
| 1H.1H.2H.2H-<br>perfluorohexanesulfonic acid (4:2<br>FTS)        | M16-De05164     | СР           | %     | 52       |          |     | 50-150               | Pass           |                    |
| 1H.1H.2H.2H-<br>perfluorooctanesulfonic acid (6:2<br>FTS)        | M16-De05164     | СР           | %     | 117      |          |     | 50-150               | Pass           |                    |
| 1H.1H.2H.2H-<br>perfluorodecanesulfonic acid (8:2<br>FTS)        | M16-De05164     | СР           | %     | 82       |          |     | 50-150               | Pass           |                    |
| Test                                                             | Lab Sample ID   | QA<br>Source | Units | Result 1 |          |     | Acceptance<br>Limits | Pass<br>Limits | Qualifying<br>Code |
| Duplicate                                                        |                 |              |       |          |          |     |                      |                |                    |
| Per- and Polyfluorinated Alkyl Sub                               | stances (PFASs) |              |       | Result 1 | Result 2 | RPD |                      |                |                    |
| Perfluorobutanesulfonic acid (PFBS)                              | M16-De05163     | СР           | mg/kg | < 0.005  | < 0.005  | <1  | 30%                  | Pass           |                    |
| Perfluorobutanoic acid (PFBA)                                    | M16-De05163     | CP           | mg/kg | < 0.005  | < 0.005  | <1  | 30%                  | Pass           |                    |
| Perfluorohexanesulfonic acid (PFHxS)                             | M16-De05163     | СР           | mg/kg | 0.011    | 0.012    | 8.0 | 30%                  | Pass           |                    |
| Perfluorooctanesulfonic acid (PFOS)                              | M16-De05163     | СР           | mg/kg | 0.012    | 0.019    | 44  | 30%                  | Fail           | Q15                |
| Perfluorodecanesulfonic acid (PFDS)                              | M16-De05163     | СР           | mg/kg | < 0.005  | < 0.005  | <1  | 30%                  | Pass           |                    |
| Perfluoropentanoic acid (PFPeA)                                  | M16-De05163     | CP           | mg/kg | < 0.005  | < 0.005  | <1  | 30%                  | Pass           |                    |
| Perfluorohexanoic acid (PFHxA)                                   | M16-De05163     | CP           | mg/kg | 0.015    | 0.016    | 11  | 30%                  | Pass           |                    |
| Perfluoroheptanoic acid (PFHpA)                                  | M16-De05163     | CP           | mg/kg | < 0.005  | < 0.005  | <1  | 30%                  | Pass           |                    |
| Perfluorooctanoic acid (PFOA)                                    | M16-De05163     | CP           | mg/kg | < 0.005  | < 0.005  | <1  | 30%                  | Pass           |                    |
| Perfluorononanoic acid (PFNA)                                    | M16-De05163     | CP           | mg/kg | < 0.005  | < 0.005  | <1  | 30%                  | Pass           |                    |
| Perfluorodecanoic acid (PFDA)                                    | M16-De05163     | CP           | mg/kg | < 0.005  | < 0.005  | <1  | 30%                  | Pass           |                    |
| Perfluoroundecanoic acid (PFUnA)                                 | M16-De05163     | CP           | mg/kg | < 0.005  | < 0.005  | <1  | 30%                  | Pass           |                    |
| Perfluorododecanoic acid (PFDoA)                                 | M16-De05163     | CP           | mg/kg | < 0.005  | < 0.005  | <1  | 30%                  | Pass           |                    |
| Perfluorotridecanoic acid (PFTrDA)                               | M16-De05163     | CP           | mg/kg | < 0.005  | < 0.005  | <1  | 30%                  | Pass           |                    |
| Perfluorotetradecanoic acid<br>(PFTeDA)                          | M16-De05163     | СР           | mg/kg | < 0.005  | < 0.005  | <1  | 30%                  | Pass           |                    |
| Perfluorooctanesulfonamide<br>(PFOSA)                            | M16-De05163     | СР           | mg/kg | < 0.01   | < 0.01   | <1  | 30%                  | Pass           |                    |
| N-ethyl-<br>perfluorooctanesulfonamidoacetic<br>acid (NEtFOSAA)  | M16-De05163     | СР           | mg/kg | < 0.01   | < 0.01   | <1  | 30%                  | Pass           |                    |
| N-methyl-<br>perfluorooctanesulfonamidoacetic                    |                 |              |       |          |          |     |                      |                |                    |
| acid (NMeFOSAA)                                                  | M16-De05163     | CP           | mg/kg | < 0.01   | < 0.01   | <1  | 30%                  | Pass           |                    |
| 1H.1H.2H.2H-<br>perfluorohexanesulfonic acid (4:2<br>FTS)        | M16-De05163     | СР           | mg/kg | < 0.005  | < 0.005  | <1  | 30%                  | Pass           |                    |
| 1H.1H.2H.2H-<br>perfluorooctanesulfonic acid (6:2<br>FTS)        | M16-De05163     | СР           | mg/kg | < 0.01   | < 0.01   | <1  | 30%                  | Pass           |                    |
| /                                                                |                 | 67           | шу/ку | < 0.01   | < 0.01   | <1  | 30%                  | F'855          |                    |
| 1H.1H.2H.2H-<br>perfluorodecanesulfonic acid (8:2<br>FTS)        | M16-De05163     | СР           | mg/kg | < 0.005  | < 0.005  | <1  | 30%                  | Pass           |                    |
| Duplicate                                                        |                 |              |       |          |          |     |                      |                |                    |
|                                                                  |                 |              |       | Result 1 | Result 2 | RPD |                      |                |                    |
| % Moisture                                                       | M16-De05152     | NCP          | %     | 23       | 23       | 1.0 | 30%                  | Pass           |                    |
| Duplicate                                                        |                 |              |       |          |          |     | •                    |                |                    |
| Alkali Metals                                                    |                 |              |       | Result 1 | Result 2 | RPD |                      |                |                    |
| Potassium                                                        | M16-De06556     | NCP          | mg/kg | 420      | 520      | 19  | 30%                  | Pass           |                    |



| Duplicate    |             |     |       |          |          |     |     |      |  |
|--------------|-------------|-----|-------|----------|----------|-----|-----|------|--|
| Heavy Metals |             |     |       | Result 1 | Result 2 | RPD |     |      |  |
| Arsenic      | M16-De03622 | NCP | mg/kg | 3.7      | 4.1      | 10  | 30% | Pass |  |
| Cadmium      | M16-De03622 | NCP | mg/kg | < 0.4    | < 0.4    | <1  | 30% | Pass |  |
| Chromium     | M16-De03622 | NCP | mg/kg | 6.2      | 6.1      | 1.0 | 30% | Pass |  |
| Copper       | M16-De03622 | NCP | mg/kg | 18       | 18       | 1.0 | 30% | Pass |  |
| Lead         | M16-De03622 | NCP | mg/kg | 40       | 39       | 1.0 | 30% | Pass |  |
| Mercury      | M16-De03622 | NCP | mg/kg | < 0.1    | < 0.1    | <1  | 30% | Pass |  |
| Nickel       | M16-De03622 | NCP | mg/kg | 6.9      | 7.0      | 1.0 | 30% | Pass |  |
| Zinc         | M16-De03621 | NCP | mg/kg | 45       | 46       | 1.0 | 30% | Pass |  |



mgt

#### Comments

| Sample Integrity                                                        |     |
|-------------------------------------------------------------------------|-----|
| Custody Seals Intact (if used)                                          | N/A |
| Attempt to Chill was evident                                            | Yes |
| Sample correctly preserved                                              | Yes |
| Appropriate sample containers have been used                            | Yes |
| Sample containers for volatile analysis received with minimal headspace | Yes |
| Samples received within HoldingTime                                     | Yes |
| Some samples have been subcontracted                                    | No  |

#### **Qualifier Codes/Comments**

Code Description

The matrix spike recovery is outside of the recommended acceptance criteria. An acceptable recovery was obtained for the laboratory control sample indicating a sample matrix interference

Q15 The RPD reported passes Eurofins | mgt's QC - Acceptance Criteria as defined in the Internal Quality Control Review and Glossary page of this report.

### Authorised By

Mary Makarios Alex Petridis Jonathon Angell Huong Le Analytical Services Manager Senior Analyst-Metal (VIC) Senior Analyst-Organic (QLD) Senior Analyst-Inorganic (VIC)

Glenn Jackson National Operations Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested

\* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins | mgt shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins | mgt be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.



mgt

GHD Melbourne Level 8, 180 Lonsdale St Melbourne VIC 3000





## Certificate of Analysis

NATA Accredited Accreditation Number 1261 Site Number 1254

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention:

Ben Anderson

Report Project name Project ID Received Date **526459-W** PRNSW-DENILQUIN 212558305 Dec 05, 2016

| Client Sample ID                                          |         |          | F004                   |
|-----------------------------------------------------------|---------|----------|------------------------|
| Sample Matrix                                             |         |          | FS01<br>Water          |
| Eurofins   mgt Sample No.                                 |         |          | M16-De05162            |
|                                                           |         |          |                        |
| Date Sampled                                              |         |          | Nov 29, 2016           |
| Test/Reference                                            | LOR     | Unit     |                        |
| Per- and Polyfluorinated Alkyl Substances (PFASs)         | 1       | <u>г</u> |                        |
| Perfluorobutanesulfonic acid (PFBS)                       | 0.00001 | mg/L     | 0.00003                |
| Perfluorobutanoic acid (PFBA)                             | 0.00005 | mg/L     | 0.00007                |
| Perfluorohexanesulfonic acid (PFHxS)                      | 0.00001 | mg/L     | <sup>N09</sup> 0.00018 |
| Perfluorooctanesulfonic acid (PFOS)                       | 0.00001 | mg/L     | <sup>N09</sup> 0.0011  |
| Perfluorodecanesulfonic acid (PFDS)                       | 0.00001 | mg/L     | < 0.00001              |
| Perfluoropentanoic acid (PFPeA)                           | 0.00001 | mg/L     | 0.00008                |
| Perfluorohexanoic acid (PFHxA)                            | 0.00001 | mg/L     | <sup>N09</sup> 0.00015 |
| Perfluoroheptanoic acid (PFHpA)                           | 0.00001 | mg/L     | 0.00003                |
| Perfluorooctanoic acid (PFOA)                             | 0.00001 | mg/L     | <sup>N09</sup> 0.00004 |
| Perfluorononanoic acid (PFNA)                             | 0.00001 | mg/L     | 0.00002                |
| Perfluorodecanoic acid (PFDA)                             | 0.00001 | mg/L     | < 0.00001              |
| Perfluoroundecanoic acid (PFUnA)                          | 0.00001 | mg/L     | < 0.00001              |
| Perfluorododecanoic acid (PFDoA)                          | 0.00001 | mg/L     | < 0.00001              |
| Perfluorotridecanoic acid (PFTrDA)                        | 0.00001 | mg/L     | < 0.00001              |
| Perfluorotetradecanoic acid (PFTeDA)                      | 0.00001 | mg/L     | < 0.00001              |
| Perfluorooctanesulfonamide (PFOSA)                        | 0.00005 | mg/L     | < 0.00005              |
| N-ethyl-perfluorooctanesulfonamidoacetic acid (NEtFOSAA)  | 0.00005 | mg/L     | < 0.00005              |
| N-methyl-perfluorooctanesulfonamidoacetic acid (NMeFOSAA) | 0.00005 | mg/L     | < 0.00005              |
| 1H.1H.2H.2H-perfluorohexanesulfonic acid (4:2 FTS)        | 0.00001 | mg/L     | < 0.00001              |
| 1H.1H.2H.2H-perfluorooctanesulfonic acid (6:2 FTS)        | 0.00005 | mg/L     | 0.00005                |
| 1H.1H.2H.2H-perfluorodecanesulfonic acid (8:2 FTS)        | 0.00001 | mg/L     | < 0.00001              |
| d5-n-EtFOSAA (surr.)                                      | 1       | %        | 71                     |
| 13C-PFHxA (surr.)                                         | 1       | %        | 77                     |
| 13C8-PFOS (surr.)                                         | 1       | %        | 80                     |
| ρH                                                        | 0.1     | pH Units | 7.7                    |
| Total Dissolved Solids                                    | 10      | mg/L     | 150                    |



### Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

| Description                                                                  | Testing Site | Extracted    | Holding Time |
|------------------------------------------------------------------------------|--------------|--------------|--------------|
| Per- and Polyfluorinated Alkyl Substances (PFASs)                            | Brisbane     | Dec 08, 2016 | 14 Day       |
| - Method: LTM-ORG-2100 Per- and Polyfluorinated Alkyl Substances by LC-MS/MS |              |              |              |
| рН                                                                           | Melbourne    | Dec 06, 2016 | 0 Hours      |
| - Method: LTM-GEN-7090 pH in water by ISE                                    |              |              |              |
| Total Dissolved Solids                                                       | Melbourne    | Dec 06, 2016 | 7 Day        |
| - Method: LM-LTM-INO-4110 (Total Dissolved Solids @ 178°C - 182°C)           |              |              |              |

|                                                 | 🔅 eur                                                                                                                                                            | ofins        | mgt              |        | ABN– 50 005 (<br>e.mail : Enviro'<br>web : www.eur | Sales@   | eurofins  | s.com                  | 2<br>0<br>P<br>N                      | AIA#      | ston Tov<br>VIC 310<br>+61 3 85                      |                                                                                     | Sydney         Brisbane         Perth           Unit F3, Building F         1/21 Smallwood Place         2/91 Leach Highway           16 Mars Road         Murarife QLD 4172         Kewdale WA 6105           Lane Cove West NSW 2066         Phone : +61 7 3902 4600         Phone : +61 8251 9600           Phone : +61 2 9900 8400         NATA # 1261 Site # 20794         NATA # 1261           NATA # 1261 Site # 18217         Site # 18217         Site # 18217 |
|-------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------------------|--------|----------------------------------------------------|----------|-----------|------------------------|---------------------------------------|-----------|------------------------------------------------------|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ad<br>Pr                                        | Company Name:       GHD Pty Ltd VIC         Address:       Level 8, 180 Lonsdale St         Melbourne       VIC 3000         Project Name:       PRNSW-DENILQUIN |              |                  |        | Order No.:<br>Report #:<br>Phone:<br>Fax:          |          |           |                        | :<br>526459<br>8687 8000<br>8687 8111 |           |                                                      | Received:Dec 5, 2016 3:23 PMDue:Dec 12, 2016Priority:5 DayContact Name:Ben Anderson |                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Pr                                              | oject ID:                                                                                                                                                        | 212558305    |                  |        |                                                    |          |           |                        |                                       |           |                                                      |                                                                                     | Eurofins   mgt Analytical Services Manager : Mary Makarios                                                                                                                                                                                                                                                                                                                                                                                                               |
| Sample Detail                                   |                                                                                                                                                                  |              |                  |        |                                                    | рH       | Potassium | Total Dissolved Solids | Total Organic Carbon                  | Metals M8 | Per- and Polyfluorinated Alkyl Substances<br>(PFASs) | Moisture Set                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Melbourne Laboratory - NATA Site # 1254 & 14271 |                                                                                                                                                                  |              |                  |        |                                                    | Х        | х         | Х                      | Х                                     | Х         |                                                      | х                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Syd                                             | Sydney Laboratory - NATA Site # 18217                                                                                                                            |              |                  |        |                                                    |          |           |                        |                                       |           |                                                      |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Brisbane Laboratory - NATA Site # 20794         |                                                                                                                                                                  |              |                  |        |                                                    |          |           |                        |                                       | х         |                                                      |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Perth Laboratory - NATA Site # 18217            |                                                                                                                                                                  |              |                  |        |                                                    |          |           |                        |                                       |           | ļ                                                    |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| External Laboratory                             |                                                                                                                                                                  |              |                  |        |                                                    | <u> </u> |           |                        |                                       |           |                                                      |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| No                                              | Sample ID                                                                                                                                                        | Sample Date  | Sampling<br>Time | Matrix | LAB ID                                             |          |           |                        |                                       |           |                                                      |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1                                               | FS01                                                                                                                                                             | Nov 29, 2016 |                  | Water  | M16-De05162                                        | х        |           | х                      |                                       |           | х                                                    |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 2                                               |                                                                                                                                                                  | Nov 30, 2016 |                  | Soil   | M16-De05163                                        |          | х         |                        | х                                     | х         | х                                                    | х                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 3                                               |                                                                                                                                                                  | Nov 30, 2016 |                  | Soil   | M16-De05164                                        |          | х         |                        | х                                     | x         | х                                                    | х                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Test                                            | Counts                                                                                                                                                           | · · ·        |                  |        |                                                    | 1        | 2         | 1                      | 2                                     | 2         | 3                                                    | 2                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |



## mgt

#### Internal Quality Control Review and Glossary

#### General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 4. Results are uncorrected for matrix spikes or surrogate recoveries.
- 5. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 6. Samples were analysed on an 'as received' basis. 7. This report replaces any interim results previously issued.

#### **Holding Times**

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Advice.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported. Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

\*\*NOTE: pH duplicates are reported as a range NOT as RPD

#### Units

 mg/kg: milligrams per Kilogram
 mg/l: milligrams per litre

 ug/l: micrograms per litre
 ppm: Parts per million

 ppb: Parts per billion
 %: Percentage

 org/100ml: Organisms per 100 millilitres
 NTU: Nephelometric Turbidity Units

 MPN/100mL: Most Probable Number of organisms per 100 millilitres
 Hercentage

| Terms            |                                                                                                                                                                   |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Dry              | Where a moisture has been determined on a solid sample the result is expressed on a dry basis.                                                                    |
| LOR              | Limit of Reporting.                                                                                                                                               |
| SPIKE            | Addition of the analyte to the sample and reported as percentage recovery.                                                                                        |
| RPD              | Relative Percent Difference between two Duplicate pieces of analysis.                                                                                             |
| LCS              | Laboratory Control Sample - reported as percent recovery                                                                                                          |
| CRM              | Certified Reference Material - reported as percent recovery                                                                                                       |
| Method Blank     | In the case of solid samples these are performed on laboratory certified clean sands.                                                                             |
|                  | In the case of water samples these are performed on de-ionised water.                                                                                             |
| Surr - Surrogate | The addition of a like compound to the analyte target and reported as percentage recovery.                                                                        |
| Duplicate        | A second piece of analysis from the same sample and reported in the same units as the result to show comparison.                                                  |
| Batch Duplicate  | A second piece of analysis from a sample outside of the clients batch of samples but run within the laboratory batch of analysis.                                 |
| Batch SPIKE      | Spike recovery reported on a sample from outside of the clients batch of samples but run within the laboratory batch of analysis.                                 |
| USEPA            | United States Environmental Protection Agency                                                                                                                     |
| APHA             | American Public Health Association                                                                                                                                |
| TCLP             | Toxicity Characteristic Leaching Procedure                                                                                                                        |
| COC              | Chain of Custody                                                                                                                                                  |
| SRA              | Sample Receipt Advice                                                                                                                                             |
| СР               | Client Parent - QC was performed on samples pertaining to this report                                                                                             |
| NCP              | Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within |
| TEQ              | Toxic Equivalency Quotient                                                                                                                                        |
|                  |                                                                                                                                                                   |

#### **QC** - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 50-150%-Phenols & PFASs 20-130%

#### **QC Data General Comments**

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.



### **Quality Control Results**

| Test                                                      | Units | Result 1  | Acceptance<br>Limits | Pass<br>Limits | Qualifying<br>Code |
|-----------------------------------------------------------|-------|-----------|----------------------|----------------|--------------------|
| Method Blank                                              |       |           |                      |                |                    |
| Per- and Polyfluorinated Alkyl Substances (PFASs)         |       |           |                      |                |                    |
| Perfluorobutanesulfonic acid (PFBS)                       | mg/L  | < 0.00001 | 0.00001              | Pass           |                    |
| Perfluorobutanoic acid (PFBA)                             | mg/L  | < 0.00005 | 0.00005              | Pass           |                    |
| Perfluorohexanesulfonic acid (PFHxS)                      | mg/L  | < 0.00001 | 0.00001              | Pass           |                    |
| Perfluorooctanesulfonic acid (PFOS)                       | mg/L  | < 0.00001 | 0.00001              | Pass           |                    |
| Perfluorodecanesulfonic acid (PFDS)                       | mg/L  | < 0.00001 | 0.00001              | Pass           |                    |
| Perfluoropentanoic acid (PFPeA)                           | mg/L  | < 0.00001 | 0.00001              | Pass           |                    |
| Perfluorohexanoic acid (PFHxA)                            | mg/L  | < 0.00001 | 0.00001              | Pass           |                    |
| Perfluoroheptanoic acid (PFHpA)                           | mg/L  | < 0.00001 | 0.00001              | Pass           |                    |
| Perfluorooctanoic acid (PFOA)                             | mg/L  | < 0.00001 | 0.00001              | Pass           |                    |
| Perfluorononanoic acid (PFNA)                             | mg/L  | < 0.00001 | 0.00001              | Pass           |                    |
| Perfluorodecanoic acid (PFDA)                             | mg/L  | < 0.00001 | 0.00001              | Pass           |                    |
| Perfluoroundecanoic acid (PFUnA)                          | mg/L  | < 0.00001 | 0.00001              | Pass           |                    |
| Perfluorododecanoic acid (PFDoA)                          | mg/L  | < 0.00001 | 0.00001              | Pass           |                    |
| Perfluorotridecanoic acid (PFTrDA)                        | mg/L  | < 0.00001 | 0.00001              | Pass           |                    |
| Perfluorotetradecanoic acid (PFTeDA)                      | mg/L  | < 0.00001 | 0.00001              | Pass           |                    |
| Perfluorooctanesulfonamide (PFOSA)                        | mg/L  | < 0.00005 | 0.00005              | Pass           |                    |
| N-ethyl-perfluorooctanesulfonamidoacetic acid (NEtFOSAA)  | mg/L  | < 0.00005 | 0.00005              | Pass           |                    |
| N-methyl-perfluorooctanesulfonamidoacetic acid (NMeFOSAA) | mg/L  | < 0.00005 | 0.00005              | Pass           |                    |
| 1H.1H.2H.2H-perfluorohexanesulfonic acid (4:2 FTS)        | mg/L  | < 0.00001 | 0.00001              | Pass           |                    |
| 1H.1H.2H.2H-perfluorooctanesulfonic acid (6:2 FTS)        | mg/L  | < 0.00005 | 0.00005              | Pass           |                    |
| 1H.1H.2H.2H-perfluorodecanesulfonic acid (8:2 FTS)        | mg/L  | < 0.00001 | 0.00001              | Pass           |                    |
| Method Blank                                              |       | ·         |                      |                |                    |
| Total Dissolved Solids                                    | mg/L  | < 10      | 10                   | Pass           |                    |
| LCS - % Recovery                                          |       | ·         |                      |                |                    |
| Per- and Polyfluorinated Alkyl Substances (PFASs)         |       |           |                      |                |                    |
| Perfluorobutanesulfonic acid (PFBS)                       | %     | 87        | 50-150               | Pass           |                    |
| Perfluorobutanoic acid (PFBA)                             | %     | 95        | 50-150               | Pass           |                    |
| Perfluorohexanesulfonic acid (PFHxS)                      | %     | 89        | 50-150               | Pass           |                    |
| Perfluorooctanesulfonic acid (PFOS)                       | %     | 97        | 50-150               | Pass           |                    |
| Perfluorodecanesulfonic acid (PFDS)                       | %     | 91        | 50-150               | Pass           |                    |
| Perfluoropentanoic acid (PFPeA)                           | %     | 86        | 50-150               | Pass           |                    |
| Perfluorohexanoic acid (PFHxA)                            | %     | 96        | 50-150               | Pass           |                    |
| Perfluoroheptanoic acid (PFHpA)                           | %     | 86        | 50-150               | Pass           |                    |
| Perfluorooctanoic acid (PFOA)                             | %     | 97        | 50-150               | Pass           |                    |
| Perfluorononanoic acid (PFNA)                             | %     | 88        | 50-150               | Pass           |                    |
| Perfluorodecanoic acid (PFDA)                             | %     | 86        | 50-150               | Pass           |                    |
| Perfluoroundecanoic acid (PFUnA)                          | %     | 94        | 50-150               | Pass           |                    |
| Perfluorododecanoic acid (PFDoA)                          | %     | 86        | 50-150               | Pass           |                    |
| Perfluorotridecanoic acid (PFTrDA)                        | %     | 90        | 50-150               | Pass           |                    |
| Perfluorotetradecanoic acid (PFTeDA)                      | %     | 94        | 50-150               | Pass           |                    |
| Perfluorooctanesulfonamide (PFOSA)                        | %     | 84        | 50-150               | Pass           |                    |
| N-ethyl-perfluorooctanesulfonamidoacetic acid (NEtFOSAA)  | %     | 95        | 50-150               | Pass           |                    |
| N-methyl-perfluorooctanesulfonamidoacetic acid (NMeFOSAA) | %     | 86        | 50-150               | Pass           |                    |
| 1H.1H.2H.2H-perfluorohexanesulfonic acid (4:2 FTS)        | %     | 90        | 50-150               | Pass           |                    |
| 1H.1H.2H.2H-perfluorooctanesulfonic acid (6:2 FTS)        | %     | 96        | 50-150               | Pass           |                    |
| 1H.1H.2H.2H-perfluorodecanesulfonic acid (8:2 FTS)        | %     | 89        | 50-150               | Pass           |                    |
| LCS - % Recovery                                          |       |           |                      |                |                    |
| Total Dissolved Solids                                    | %     | 100       | 70-130               | Pass           |                    |



| Test                                                             | Lab Sample ID   | QA<br>Source                          | Units | Result 1 |          |     | Acceptance<br>Limits | Pass<br>Limits | Qualifying<br>Code |
|------------------------------------------------------------------|-----------------|---------------------------------------|-------|----------|----------|-----|----------------------|----------------|--------------------|
| Spike - % Recovery                                               |                 |                                       |       | T        |          |     |                      |                |                    |
| Per- and Polyfluorinated Alkyl Sub                               | stances (PFASs) | , , , , , , , , , , , , , , , , , , , |       | Result 1 |          |     |                      |                |                    |
| Perfluorobutanesulfonic acid (PFBS)                              | M16-De09633     | NCP                                   | %     | 122      |          |     | 50-150               | Pass           |                    |
| Perfluorobutanoic acid (PFBA)                                    | M16-De09633     | NCP                                   | %     | 134      |          |     | 50-150               | Pass           |                    |
| Perfluorohexanesulfonic acid (PFHxS)                             | M16-De09633     | NCP                                   | %     | 121      |          |     | 50-150               | Pass           |                    |
| Perfluorooctanesulfonic acid (PFOS)                              | M16-De09633     | NCP                                   | %     | 126      |          |     | 50-150               | Pass           |                    |
| Perfluorodecanesulfonic acid (PFDS)                              | M16-De09633     | NCP                                   | %     | 122      |          |     | 50-150               | Pass           |                    |
| Perfluoropentanoic acid (PFPeA)                                  | M16-De09633     | NCP                                   | %     | 101      |          |     | 50-150               | Pass           |                    |
| Perfluorohexanoic acid (PFHxA)                                   | M16-De09633     | NCP                                   | %     | 129      |          |     | 50-150               | Pass           |                    |
| Perfluoroheptanoic acid (PFHpA)                                  | M16-De09633     | NCP                                   | %     | 105      |          |     | 50-150               | Pass           |                    |
| Perfluorooctanoic acid (PFOA)                                    | M16-De09633     | NCP                                   | %     | 135      |          |     | 50-150               | Pass           |                    |
| Perfluorononanoic acid (PFNA)                                    | M16-De09633     | NCP                                   | %     | 108      |          |     | 50-150               | Pass           |                    |
| Perfluorodecanoic acid (PFDA)                                    | M16-De09633     | NCP                                   | %     | 124      |          |     | 50-150               | Pass           |                    |
| Perfluoroundecanoic acid (PFUnA)                                 | M16-De09633     | NCP                                   | %     | 122      |          |     | 50-150               | Pass           |                    |
| Perfluorododecanoic acid (PFDoA)                                 | M16-De09633     | NCP                                   | %     | 117      |          |     | 50-150               | Pass           |                    |
| Perfluorotridecanoic acid (PFTrDA)                               | M16-De09633     | NCP                                   | %     | 124      |          |     | 50-150               | Pass           |                    |
| Perfluorotetradecanoic acid<br>(PFTeDA)                          | M16-De09633     | NCP                                   | %     | 113      |          |     | 50-150               | Pass           |                    |
| Perfluorooctanesulfonamide                                       |                 |                                       |       |          |          |     |                      |                |                    |
| (PFOSA)<br>N-ethyl-                                              | M16-De09633     | NCP                                   | %     | 110      |          |     | 50-150               | Pass           |                    |
| perfluorooctanesulfonamidoacetic<br>acid (NEtFOSAA)              | M16-De09633     | NCP                                   | %     | 144      |          |     | 50-150               | Pass           |                    |
| N-methyl-<br>perfluorooctanesulfonamidoacetic<br>acid (NMeFOSAA) | M16-De09633     | NCP                                   | %     | 118      |          |     | 50-150               | Pass           |                    |
| 1H.1H.2H.2H-<br>perfluorohexanesulfonic acid (4:2<br>FTS)        | M16-De09633     | NCP                                   | %     | 97       |          |     | 50-150               | Pass           |                    |
| 1H.1H.2H.2H-                                                     | MI10-De09033    | NCF                                   | 70    | 97       |          |     | 50-150               | F d 5 5        |                    |
| perfluorooctanesulfonic acid (6:2<br>FTS)                        | M16-De09633     | NCP                                   | %     | 134      |          |     | 50-150               | Pass           |                    |
| 1H.1H.2H.2H-<br>perfluorodecanesulfonic acid (8:2<br>FTS)        | M16-De09633     | NCP                                   | %     | 141      |          |     | 50-150               | Pass           |                    |
| Test                                                             | Lab Sample ID   | QA<br>Source                          | Units | Result 1 |          |     | Acceptance<br>Limits | Pass<br>Limits | Qualifying<br>Code |
| Duplicate                                                        |                 |                                       |       |          | 11       |     | 1                    |                |                    |
| Per- and Polyfluorinated Alkyl Sub                               | stances (PFASs) |                                       |       | Result 1 | Result 2 | RPD |                      |                |                    |
| Perfluorobutanesulfonic acid<br>(PFBS)                           | M16-De09631     | NCP                                   | mg/L  | < 0.0003 | < 0.0003 | <1  | 30%                  | Pass           |                    |
| Perfluorobutanoic acid (PFBA)                                    | M16-De09631     | NCP                                   | mg/L  | < 0.0015 | < 0.0015 | <1  | 30%                  | Pass           |                    |
| Perfluorohexanesulfonic acid<br>(PFHxS)                          | M16-De09631     | NCP                                   | mg/L  | < 0.0003 | < 0.0003 | <1  | 30%                  | Pass           |                    |
| Perfluorooctanesulfonic acid (PFOS)                              | M16-De09631     | NCP                                   | mg/L  | < 0.0003 | < 0.0003 | <1  | 30%                  | Pass           |                    |
| Perfluorodecanesulfonic acid (PFDS)                              | M16-De09631     | NCP                                   | mg/L  | < 0.0003 | < 0.0003 | <1  | 30%                  | Pass           |                    |
| Perfluoropentanoic acid (PFPeA)                                  | M16-De09631     | NCP                                   | mg/L  | < 0.0003 | < 0.0003 | <1  | 30%                  | Pass           |                    |
| Perfluorohexanoic acid (PFHxA)                                   | M16-De09631     | NCP                                   | mg/L  | < 0.0003 | < 0.0003 | <1  | 30%                  | Pass           |                    |
| Perfluoroheptanoic acid (PFHpA)                                  | M16-De09631     | NCP                                   | mg/L  | < 0.0003 | < 0.0003 | <1  | 30%                  | Pass           |                    |
| Perfluorooctanoic acid (PFOA)                                    | M16-De09631     | NCP                                   | mg/L  | < 0.0003 | < 0.0003 | <1  | 30%                  | Pass           |                    |
| Perfluorononanoic acid (PFNA)                                    | M16-De09631     | NCP                                   | mg/L  | < 0.0003 | < 0.0003 | <1  | 30%                  | Pass           |                    |
| Perfluorodecanoic acid (PFDA)                                    | M16-De09631     | NCP                                   | mg/L  | < 0.0003 | < 0.0003 | <1  | 30%                  | Pass           |                    |
| Perfluoroundecanoic acid (PFUnA)                                 | M16-De09631     | NCP                                   | mg/L  | < 0.0003 | < 0.0003 | <1  | 30%                  | Pass           |                    |
| Perfluorododecanoic acid (PFDoA)                                 | M16-De09631     | NCP                                   | mg/L  | < 0.0003 | < 0.0003 | <1  | 30%                  | Pass           |                    |
| Perfluorotridecanoic acid (PFTrDA)                               | M16-De09631     | NCP                                   | mg/L  | < 0.0003 | < 0.0003 | <1  | 30%                  | Pass           |                    |



| Test                                                             | Lab Sample ID   | QA<br>Source | Units    | Result 1 |          |      | Acceptance<br>Limits | Pass<br>Limits | Qualifying<br>Code |
|------------------------------------------------------------------|-----------------|--------------|----------|----------|----------|------|----------------------|----------------|--------------------|
| Duplicate                                                        |                 |              |          |          |          |      |                      |                |                    |
| Per- and Polyfluorinated Alkyl Sub                               | stances (PFASs) |              |          | Result 1 | Result 2 | RPD  |                      |                |                    |
| Perfluorotetradecanoic acid<br>(PFTeDA)                          | M16-De09631     | NCP          | mg/L     | < 0.0003 | < 0.0003 | <1   | 30%                  | Pass           |                    |
| Perfluorooctanesulfonamide (PFOSA)                               | M16-De09631     | NCP          | mg/L     | < 0.0015 | < 0.0015 | <1   | 30%                  | Pass           |                    |
| N-ethyl-<br>perfluorooctanesulfonamidoacetic<br>acid (NEtFOSAA)  | M16-De09631     | NCP          | mg/L     | < 0.0015 | < 0.0015 | <1   | 30%                  | Pass           |                    |
| N-methyl-<br>perfluorooctanesulfonamidoacetic<br>acid (NMeFOSAA) | M16-De09631     | NCP          | mg/L     | < 0.0015 | < 0.0015 | <1   | 30%                  | Pass           |                    |
| 1H.1H.2H.2H-<br>perfluorohexanesulfonic acid (4:2<br>FTS)        | M16-De09631     | NCP          | mg/L     | < 0.0003 | < 0.0003 | <1   | 30%                  | Pass           |                    |
| 1H.1H.2H.2H-<br>perfluorooctanesulfonic acid (6:2<br>FTS)        | M16-De09631     | NCP          | mg/L     | < 0.0015 | < 0.0015 | <1   | 30%                  | Pass           |                    |
| 1H.1H.2H.2H-<br>perfluorodecanesulfonic acid (8:2<br>FTS)        | M16-De09631     | NCP          | mg/L     | < 0.0003 | < 0.0003 | <1   | 30%                  | Pass           |                    |
| Duplicate                                                        |                 |              |          |          |          |      |                      |                |                    |
|                                                                  |                 |              |          | Result 1 | Result 2 | RPD  |                      |                |                    |
| рН                                                               | M16-De04884     | NCP          | pH Units | 9.0      | 9.0      | pass | 30%                  | Pass           |                    |
| Total Dissolved Solids                                           | A16-De01895     | NCP          | mg/L     | 2500     | 2700     | 8.0  | 30%                  | Pass           |                    |



### Comments

| Sample Integrity                                                        |     |
|-------------------------------------------------------------------------|-----|
| Custody Seals Intact (if used)                                          | N/A |
| Attempt to Chill was evident                                            | Yes |
| Sample correctly preserved                                              | Yes |
| Appropriate sample containers have been used                            | Yes |
| Sample containers for volatile analysis received with minimal headspace | Yes |
| Samples received within HoldingTime                                     | Yes |
| Some samples have been subcontracted                                    | No  |

### **Qualifier Codes/Comments**

CodeDescriptionN09Quantification of linear and branched isomers has been conducted as a single total response using the relative response factor for the corresponding linear/branched standard.

### Authorised By

Mary Makarios Jonathon Angell Huong Le Analytical Services Manager Senior Analyst-Organic (QLD) Senior Analyst-Inorganic (VIC)

# Glenn Jackson National Operations Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested

- \* Indicates NATA accreditation does not cover the performance of this service
- Measurement uncertainty of test data is available on request or please click here.

Eurofins | mgt shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins | mgt be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

| STORMOJATER |  |
|-------------|--|
| 🔅 eurofins  |  |

Sydney Unit F3 - 6 Building F, 16 Mars Road, Lane Cove Phone: +612 9900 8400 Email: enviro.syd@mgtlabmark.com.au

Brisbane Ŀ. Unit 1-21 Smallwood Place, Murrarie Phone: +617 3902 4600 Email: enviro.bris@mgtlabmark.com.au

### Melbourne

2 Kingston Town Close, Oakleigh, VIC 3166 Phone: +613 8564 5000 Fax: +613 8564 5090 Email: enquiries.melb@mgtlabmark.com.au

| CLIENT DETAILS                                        |                 |                  |        | 011     | IN OF                 | 0001     | 001                          | REC  | ORD     |               | _              |              |                              |                            |                           |                     |                  |         |
|-------------------------------------------------------|-----------------|------------------|--------|---------|-----------------------|----------|------------------------------|------|---------|---------------|----------------|--------------|------------------------------|----------------------------|---------------------------|---------------------|------------------|---------|
| Company Name : GHD                                    | Contact Name    | hires 1          | Lana P | · · · · | S-rike Durphase Ordan |          |                              |      |         |               | Page t of t    |              |                              |                            |                           |                     |                  |         |
| Office Address : Level 15, 133 Castlereagh St, Sydney | Contact Name    | AUNCE            | walke  |         |                       | Pure     | Purchase Order : 21 25593 05 |      |         |               |                |              | COC Number :                 |                            |                           |                     |                  |         |
|                                                       | Project Manage  | Sen              | Anders | en/N    | icole fo              | - JPRC   | PROJECT Number :             |      |         |               |                |              | Eurofins   mgt quote ID :    |                            |                           |                     |                  |         |
|                                                       | Email for resul | ALCON            | e rose | 10gh    | PROJECT Name : FR     |          |                              |      | NSW     | - Der         | il'qu'         |              |                              | Data output format: esclar |                           |                     |                  |         |
| Special Directions & Comments :                       | 1-1-1-          |                  | wantee | edter   | E.CON                 | _        |                              |      |         | _             | So             | me comn<br>F | non holding<br>or further in | g times (with              | th correct<br>contact the | t preserva<br>e lab | auon).           |         |
|                                                       |                 | V                |        |         |                       |          |                              |      |         |               | Waters         |              |                              |                            |                           | s                   | oils             |         |
|                                                       | 1               | X                |        | 11      |                       |          | 2                            |      | BTE     | X, MAH, V     | oc             | . 8          | 14 days                      | BTE)                       | MAH V                     | 00                  |                  | 14 d    |
|                                                       |                 | 0                |        | 11      |                       |          |                              |      |         | I, PAH, Phi   | mols, Pest     | icides       | 7 days                       | TRH,                       | PAH. Phe                  | nois. Pes           | ticldes          | 14 d    |
|                                                       |                 | 2                |        | 11      | 1 1 1 1               |          |                              | 0.01 | Hea     | vy Metals     |                |              | 6 months                     |                            | Metals                    |                     |                  | 6 ma    |
|                                                       | <b>5</b> ( 1 )  | 8 1              | 5      | 11      | 1111                  | 11.0     |                              |      | Mer     | cury, CrVI    |                |              | 28 days                      | Merci                      | J. CrVI                   |                     |                  | 28 da   |
|                                                       |                 | 181213           |        |         |                       |          |                              |      | Micr    | obiological   | lesting        |              | 24 hours                     | _                          | biological                | testing             |                  | 72 ho   |
|                                                       |                 | 34               |        | 11      | 1111                  |          |                              |      | BOD     | ), Nitrate, N | litrite, Total | N            | 2 days                       | Anior                      |                           |                     |                  | 28 da   |
|                                                       | 5               | 2 3              |        | 11      |                       |          |                              |      | Solic   | ls - TSS, T   | DS etc         |              | 7 days                       | _                          | AS, pH F                  | ield and F          | OX. CrS          | 24 ho   |
| arofins   mgt Di water betch number:                  |                 | metals (standard | 9      | 11      |                       | 11       |                              |      | Ferre   | ous iron      |                |              | 7 days                       | _                          | TCLP                      |                     |                  | 7 days  |
|                                                       | Total<br>Cert   | P 1              |        | 11      |                       |          |                              |      |         |               |                |              |                              |                            |                           | -                   |                  | Tr Uaga |
| Sample ID Cata Matrix                                 | of the second   | 2 1              | P      |         |                       |          | 10                           |      | Contain | 0(\$:         |                |              |                              | _                          |                           | -                   | T                |         |
| 1 MWOZB_10.2-19-3 15/12 Soil                          | 1 11            |                  | -      |         |                       |          |                              |      | 1LP     | 250P          | 125P           | 1LA          | 40mL viel                    | 125mL A                    | Jar                       | 1                   | Sample con       | nments: |
| 2 MW03B-13-1-13-1 1                                   |                 | XX               | 4      | 1       |                       |          |                              |      |         |               |                |              |                              |                            | -                         |                     |                  | _       |
| 3 MW038-15.1-15-2                                     |                 | XX               |        | ++-     |                       |          | -                            |      |         |               | 0.11           |              |                              |                            |                           |                     |                  |         |
| The special state of the                              |                 |                  | X      |         |                       |          |                              |      |         | 1             | 1              |              |                              | 1.1                        | -                         | -                   | -                |         |
| 5                                                     |                 |                  |        |         |                       |          | 1                            |      |         |               |                |              |                              |                            | -                         | -                   | -                |         |
| 6                                                     |                 |                  |        |         | -                     |          | 1.200                        |      |         |               |                | -            | -                            |                            |                           | -                   |                  |         |
| 7                                                     |                 | +++              |        | 11      |                       |          |                              |      |         | 1             |                | 25           |                              | 1 2.1                      |                           |                     |                  |         |
| 8                                                     |                 |                  |        |         |                       |          |                              |      |         |               |                |              |                              |                            | -                         | 1.1.1               |                  | _       |
| 9                                                     |                 |                  |        |         |                       |          |                              |      |         |               |                |              |                              | -                          |                           | -                   |                  |         |
| 10                                                    |                 |                  |        |         |                       |          |                              |      |         |               |                | 1            |                              | -                          | -                         |                     |                  |         |
|                                                       |                 |                  |        |         |                       |          |                              |      |         |               |                |              |                              | -                          |                           | 1.2.2               |                  |         |
| 11                                                    |                 |                  |        |         |                       |          |                              |      |         |               |                |              |                              |                            |                           |                     | _                |         |
| 13                                                    |                 |                  |        |         |                       |          |                              |      |         |               | 1              | S 1          |                              | -                          |                           |                     |                  |         |
|                                                       |                 |                  |        |         |                       |          |                              |      |         |               |                |              |                              |                            | -                         | 2 2 7               |                  |         |
| 14                                                    |                 |                  |        |         | 14                    |          |                              |      |         |               |                |              |                              |                            |                           |                     |                  |         |
| 15                                                    |                 |                  |        |         |                       |          |                              |      |         | 1.1.1         |                | 1.0          |                              |                            |                           |                     |                  |         |
|                                                       |                 |                  |        |         |                       |          |                              |      |         |               | 120            | 1            |                              |                            |                           | -                   |                  |         |
| linguished By: Supple Throws Receive                  |                 | tory Staff       | -      |         | Tur                   | n around | time                         |      |         |               | h              | lethod O     | f Shipment                   |                            | -                         | -                   | Temperature on a | arrival |
| Alice Infolded Receive                                | at<br>At        |                  |        |         |                       |          |                              |      |         |               | _              |              | - Anilement                  |                            |                           |                     |                  |         |
| te & Time                                             |                 |                  |        | 1 DAY   | 2 DAY                 | 3 DAY    | -                            |      | ⊂ c     | ourier        |                |              |                              |                            |                           |                     |                  |         |
|                                                       | Time :          | 12:17            |        |         | a ser L               | JUAT     |                              |      | н Ц     | and Delive    | red            |              |                              |                            |                           |                     | Report number:   | _       |
|                                                       |                 | 1217             |        | E DAY F |                       |          |                              |      |         | ostal         |                |              |                              |                            |                           |                     | issport number:  |         |
| nature: ANOTTE Signatu                                | re:             | ay               | 1      | S DAY   | 10 DAY                | Other:   |                              |      |         | onsignme      | nt#:           |              |                              |                            |                           |                     | 52908            | 20      |
|                                                       | 10              | ALC: NO          |        |         |                       |          |                              |      |         | -             |                |              |                              |                            |                           |                     |                  | 10      |

QS3009\_R0 Issue Date: 25 February 2013 Page 1 of 1



## GHD Pty Ltd NSW Level 15, 133 Castlereagh Street Sydney NSW 2000





# Certificate of Analysis

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention:

**Ben Anderson** 

Report Project name Project ID Received Date **529080-S** FRNSW-DENILIQUIN #2 212558305 Dec 22, 2016

| Client Sample ID          |     |       | MW02B_10.2-<br>10.3 | MW03B_13.8-<br>13.9 |
|---------------------------|-----|-------|---------------------|---------------------|
| Sample Matrix             |     |       | Soil                | Soil                |
| Eurofins   mgt Sample No. |     |       | S16-De23615         | S16-De23616         |
| Date Sampled              |     |       | Dec 15, 2016        | Dec 15, 2016        |
| Test/Reference            | LOR | Unit  |                     |                     |
| Heavy Metals              |     |       |                     |                     |
| Arsenic                   | 2   | mg/kg | 6.1                 | 6.9                 |
| Cadmium                   | 0.4 | mg/kg | < 0.4               | < 0.4               |
| Chromium                  | 5   | mg/kg | 10                  | 21                  |
| Copper                    | 5   | mg/kg | 5.5                 | 6.6                 |
| Lead                      | 5   | mg/kg | 6.2                 | 6.9                 |
| Mercury                   | 0.1 | mg/kg | < 0.1               | < 0.1               |
| Nickel                    | 5   | mg/kg | 7.5                 | 7.8                 |
| Zinc                      | 5   | mg/kg | 18                  | 21                  |
| % Moisture                | 1   | %     | 14                  | 4.4                 |



### Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

| Description                                                     | Testing Site | Extracted    | Holding Time |
|-----------------------------------------------------------------|--------------|--------------|--------------|
| Metals M8                                                       | Melbourne    | Dec 23, 2016 | 28 Days      |
| - Method: LTM-MET-3030 by ICP-OES (hydride ICP-OES for Mercury) |              |              |              |
| % Moisture                                                      | Melbourne    | Dec 22, 2016 | 14 Day       |
| - Method: LTM-GEN-7080 Moisture                                 |              |              |              |

|      | 🔅 eur                    | ofins                                             | mgt                    |        | ABN– 50 005<br>e.mail : Enviro<br>web : www.eu | Sales@ | eurofins  | .com                           | Melbourne<br>2-5 Kingston Town Close<br>Oakleigh VIC 3166<br>Phone : +61 3 8564 5000<br>NATA # 1261<br>Site # 1254 & 14271 | Sydney<br>Unit F3, Building F<br>16 Mars Road<br>Lane Cove West NSW 2066<br>Phone : +61 2 9900 8400<br>NATA # 1261 Site # 18217 | Brisbane<br>1/21 Smallwood Place<br>Murarrie QLD 4172<br>Phone : +61 7 3902 4600<br>NATA # 1261 Site # 2079 | Perth<br>2/91 Leach Highway<br>Kewdale WA 6105<br>Phone : +61 8 9251 9600<br>4 NATA # 1261<br>Site # 18217 |
|------|--------------------------|---------------------------------------------------|------------------------|--------|------------------------------------------------|--------|-----------|--------------------------------|----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| Ac   | ompany Name:<br>Idress:  | GHD Pty Ltd<br>Level 15, 13<br>Sydney<br>NSW 2000 | l NSW<br>3 Castlereagh | Street |                                                |        | Re        | der No<br>port #<br>one:<br>k: |                                                                                                                            |                                                                                                                                 | Due:<br>Priority:                                                                                           | Dec 22, 2016 12:17 PM<br>Jan 3, 2017<br>5 Day<br>Ben Anderson                                              |
|      | oject Name:<br>oject ID: | FRNSW-DEI<br>212558305                            | NILIQUIN #2            |        |                                                |        |           |                                |                                                                                                                            | Eurofin                                                                                                                         | s   mgt Analytical Ser                                                                                      | vices Manager : Nibha Vaidya                                                                               |
|      |                          | Sa                                                | mple Detail            |        |                                                | НОГр   | Metals M8 | Moisture Set                   |                                                                                                                            |                                                                                                                                 |                                                                                                             |                                                                                                            |
| Mell | bourne Laborato          | ory - NATA Site                                   | # 1254 & 142           | 271    |                                                | Х      | Х         | Х                              |                                                                                                                            |                                                                                                                                 |                                                                                                             |                                                                                                            |
| Syd  | ney Laboratory           | - NATA Site # 1                                   | 8217                   |        |                                                |        |           |                                |                                                                                                                            |                                                                                                                                 |                                                                                                             |                                                                                                            |
|      | bane Laborator           |                                                   |                        |        |                                                |        |           |                                |                                                                                                                            |                                                                                                                                 |                                                                                                             |                                                                                                            |
|      | h Laboratory - N         |                                                   | 217                    |        |                                                |        |           |                                |                                                                                                                            |                                                                                                                                 |                                                                                                             |                                                                                                            |
|      | ernal Laboratory         |                                                   |                        |        |                                                |        |           |                                |                                                                                                                            |                                                                                                                                 |                                                                                                             |                                                                                                            |
| No   | Sample ID                | Sample Date                                       | Sampling<br>Time       | Matrix | LAB ID                                         |        |           |                                |                                                                                                                            |                                                                                                                                 |                                                                                                             |                                                                                                            |
| 1    | MW02B_10.2-<br>10.3      | Dec 15, 2016                                      |                        | Soil   | S16-De23615                                    |        | х         | х                              |                                                                                                                            |                                                                                                                                 |                                                                                                             |                                                                                                            |
| 2    | MW03B_13.8-<br>13.9      |                                                   |                        | Soil   | S16-De23616                                    |        | х         | х                              |                                                                                                                            |                                                                                                                                 |                                                                                                             |                                                                                                            |
| 3    | MW03B_15.1-<br>15.2      | Dec 15, 2016                                      |                        | Soil   | S16-De23617                                    | х      |           |                                |                                                                                                                            |                                                                                                                                 |                                                                                                             |                                                                                                            |
| Test | t Counts                 |                                                   |                        |        |                                                | 1      | 2         | 2                              |                                                                                                                            |                                                                                                                                 |                                                                                                             |                                                                                                            |



### Internal Quality Control Review and Glossary

### General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 4. Results are uncorrected for matrix spikes or surrogate recoveries.
- 5. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 6. Samples were analysed on an 'as received' basis. 7. This report replaces any interim results previously issued.

### **Holding Times**

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Advice.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported. Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

\*\*NOTE: pH duplicates are reported as a range NOT as RPD

### Units

 mg/kg: milligrams per Kilogram
 mg/l: milligrams per litre

 ug/l: micrograms per litre
 ppm: Parts per million

 ppb: Parts per billion
 %: Percentage

 org/100ml: Organisms per 100 millilitres
 NTU: Nephelometric Turbidity Units

 MPN/100mL: Most Probable Number of organisms per 100 millilitres
 Hercentage

| Terms            |                                                                                                                                                                   |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Dry              | Where a moisture has been determined on a solid sample the result is expressed on a dry basis.                                                                    |
| LOR              | Limit of Reporting.                                                                                                                                               |
| SPIKE            | Addition of the analyte to the sample and reported as percentage recovery.                                                                                        |
| RPD              | Relative Percent Difference between two Duplicate pieces of analysis.                                                                                             |
| LCS              | Laboratory Control Sample - reported as percent recovery                                                                                                          |
| CRM              | Certified Reference Material - reported as percent recovery                                                                                                       |
| Method Blank     | In the case of solid samples these are performed on laboratory certified clean sands.                                                                             |
|                  | In the case of water samples these are performed on de-ionised water.                                                                                             |
| Surr - Surrogate | The addition of a like compound to the analyte target and reported as percentage recovery.                                                                        |
| Duplicate        | A second piece of analysis from the same sample and reported in the same units as the result to show comparison.                                                  |
| Batch Duplicate  | A second piece of analysis from a sample outside of the clients batch of samples but run within the laboratory batch of analysis.                                 |
| Batch SPIKE      | Spike recovery reported on a sample from outside of the clients batch of samples but run within the laboratory batch of analysis.                                 |
| USEPA            | United States Environmental Protection Agency                                                                                                                     |
| APHA             | American Public Health Association                                                                                                                                |
| TCLP             | Toxicity Characteristic Leaching Procedure                                                                                                                        |
| COC              | Chain of Custody                                                                                                                                                  |
| SRA              | Sample Receipt Advice                                                                                                                                             |
| СР               | Client Parent - QC was performed on samples pertaining to this report                                                                                             |
| NCP              | Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within |
| TEQ              | Toxic Equivalency Quotient                                                                                                                                        |
|                  |                                                                                                                                                                   |

### **QC** - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 50-150%-Phenols & PFASs 20-130%

### **QC Data General Comments**

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " --" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.



# **Quality Control Results**

|                    | Test          |              | Units      | Result 1 |          |        | Acceptance<br>Limits | Pass<br>Limits | Qualifying<br>Code |
|--------------------|---------------|--------------|------------|----------|----------|--------|----------------------|----------------|--------------------|
| Method Blank       |               |              |            |          |          |        |                      |                |                    |
| Heavy Metals       |               |              |            |          |          |        |                      |                |                    |
| Arsenic            |               |              | mg/kg      | < 2      |          |        | 2                    | Pass           |                    |
| Cadmium            |               |              | mg/kg      | < 0.4    |          |        | 0.4                  | Pass           |                    |
| Chromium           |               |              | mg/kg      | < 5      |          |        | 5                    | Pass           |                    |
| Copper             |               |              | mg/kg      | < 5      |          |        | 5                    | Pass           |                    |
| Lead               |               |              | mg/kg      | < 5      |          |        | 5                    | Pass           |                    |
| Mercury            |               |              | mg/kg      | < 0.1    |          |        | 0.1                  | Pass           |                    |
| Nickel             |               |              | mg/kg      | < 5      |          |        | 5                    | Pass           |                    |
| Zinc               |               |              | mg/kg      | < 5      |          |        | 5                    | Pass           |                    |
| LCS - % Recovery   |               |              |            |          |          |        | -                    |                |                    |
| Heavy Metals       |               |              |            |          |          |        |                      |                |                    |
| Arsenic            |               |              | %          | 84       |          |        | 80-120               | Pass           |                    |
| Cadmium            |               |              | %          | 96       |          |        | 80-120               | Pass           |                    |
| Chromium           |               |              | %          | 100      |          |        | 80-120               | Pass           |                    |
| Copper             |               |              |            |          |          |        | 80-120               | Pass           |                    |
| Lead               |               | %<br>%       | 101<br>105 |          |          | 80-120 | Pass                 |                |                    |
| Mercurv            |               |              | %          | 103      |          |        | 75-125               | Pass           |                    |
| Nickel             |               |              | %          | 109      |          |        | 80-120               | Pass           |                    |
| Zinc               |               |              |            |          |          |        | 80-120               | Pass           |                    |
| ZINC               |               | 0.4          | %          | 102      |          |        |                      |                | Qualifying         |
| Test               | Lab Sample ID | QA<br>Source | Units      | Result 1 |          |        | Acceptance<br>Limits | Pass<br>Limits | Qualifying<br>Code |
| Spike - % Recovery |               |              |            | 1        |          |        |                      |                |                    |
| Heavy Metals       |               | 1            |            | Result 1 |          |        |                      |                |                    |
| Arsenic            | M16-De22472   | NCP          | %          | 112      |          |        | 75-125               | Pass           |                    |
| Cadmium            | M16-De22472   | NCP          | %          | 117      |          |        | 75-125               | Pass           |                    |
| Chromium           | M16-De22472   | NCP          | %          | 111      |          |        | 75-125               | Pass           |                    |
| Copper             | M16-De22472   | NCP          | %          | 116      |          |        | 75-125               | Pass           |                    |
| Lead               | M16-De22472   | NCP          | %          | 126      |          |        | 75-125               | Fail           | Q08                |
| Mercury            | M16-De22472   | NCP          | %          | 133      |          |        | 70-130               | Fail           | Q08                |
| Nickel             | M16-De22472   | NCP          | %          | 113      |          |        | 75-125               | Pass           |                    |
| Zinc               | M16-De22472   | NCP          | %          | 119      |          |        | 75-125               | Pass           |                    |
| Test               | Lab Sample ID | QA<br>Source | Units      | Result 1 |          |        | Acceptance<br>Limits | Pass<br>Limits | Qualifying<br>Code |
| Duplicate          |               |              |            | 1        |          |        | -                    |                |                    |
| Heavy Metals       |               |              |            | Result 1 | Result 2 | RPD    |                      |                |                    |
| Arsenic            | M16-De22471   | NCP          | mg/kg      | 4.0      | 3.8      | 4.0    | 30%                  | Pass           |                    |
| Cadmium            | M16-De22471   | NCP          | mg/kg      | < 0.4    | < 0.4    | <1     | 30%                  | Pass           |                    |
| Chromium           | M16-De22471   | NCP          | mg/kg      | 59       | 79       | 29     | 30%                  | Pass           |                    |
| Copper             | M16-De22471   | NCP          | mg/kg      | 22       | 18       | 21     | 30%                  | Pass           |                    |
| Lead               | M16-De22471   | NCP          | mg/kg      | 16       | 14       | 10     | 30%                  | Pass           |                    |
| Mercury            | M16-De22471   | NCP          | mg/kg      | < 0.1    | < 0.1    | <1     | 30%                  | Pass           |                    |
| Nickel             | M16-De22471   | NCP          | mg/kg      | 70       | 93       | 29     | 30%                  | Pass           |                    |
| Zinc               | M16-De22471   | NCP          | mg/kg      | 54       | 36       | 39     | 30%                  | Fail           | Q15                |
| Duplicate          |               |              |            |          |          | -      |                      |                |                    |
|                    |               |              |            | Result 1 | Result 2 | RPD    |                      |                |                    |
|                    |               |              |            |          |          |        | 1                    |                |                    |



### Comments

| Sample Integrity                                                        |     |
|-------------------------------------------------------------------------|-----|
| Custody Seals Intact (if used)                                          | N/A |
| Attempt to Chill was evident                                            | Yes |
| Sample correctly preserved                                              | Yes |
| Appropriate sample containers have been used                            | No  |
| Sample containers for volatile analysis received with minimal headspace | Yes |
| Samples received within HoldingTime                                     | Yes |
| Some samples have been subcontracted                                    | No  |

### **Qualifier Codes/Comments**

Code Description

The matrix spike recovery is outside of the recommended acceptance criteria. An acceptable recovery was obtained for the laboratory control sample indicating a sample matrix interference

Q15 The RPD reported passes Eurofins | mgt's QC - Acceptance Criteria as defined in the Internal Quality Control Review and Glossary page of this report.

### Authorised By

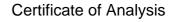
Nibha Vaidya Alex Petridis Huong Le Analytical Services Manager Senior Analyst-Metal (VIC) Senior Analyst-Inorganic (VIC)

Glenn Jackson National Operations Manager Final report - this Report replaces any previously issued Report

- Indicates Not Requested

\* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.


Eurofines (ing thail not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofines (ing to be liable for cost, out of the performance of the terror of the expect in full and release only to the instense. The second software is the effective of the effective of

| CHAIN OF CUSTODY RECORD     |                                                                                                                       | Duote # / GHD Reference | Pageot                                                                                                                                                      |
|-----------------------------|-----------------------------------------------------------------------------------------------------------------------|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GHD                         | GHD         180 Lonsdale Street, Melbourne 3000           Telephone: 613 8687 8000 Fax: 613 8687 8111         STANDAP | G                       | 11 #                                                                                                                                                        |
|                             | Laboratory: ALS                                                                                                       |                         | COURTER AND LABORATORY INSTRUCTIONS:<br>Sign white copy on receipt and release of samples.<br>Servoles are to be delivered to the 1 aboratory Address.      |
| Project                     | COURTNEY WINES Address: ALS SPRINGUALE                                                                                | VALE                    | Samples are to be converged to the Advantage contact.<br>On receipt of samples, the laboratory contact<br>to sion while conv and faxilemail to GHD Contact. |
| LIQUIN PFAS                 | NRL                                                                                                                   | E CORNU                 | On completion of analyses please return white copy with results.                                                                                            |
| ED CON                      | Type E N                                                                                                              |                         | Pink copy is returned to the sampler once the courier has signed for the samples.                                                                           |
|                             | 1e<br>T. SV                                                                                                           |                         | E-mail results to the GHD Project Manager<br>and GHD Contact with the GHD Job Number in the e-mail subject line.                                            |
| Sample I.D.                 | rix<br>Sludge<br>: Air<br>water<br>B: bag<br>glass bott<br>ottle<br>nL)                                               |                         | Note email format: firstname.lastname@ghd.com<br>Results to be provided in ESDAT comnatible format                                                          |
|                             |                                                                                                                       |                         | SAMPLE COMMENTS                                                                                                                                             |
| MILIOI                      | GIN                                                                                                                   |                         |                                                                                                                                                             |
| LUINU                       |                                                                                                                       |                         |                                                                                                                                                             |
| MINOZ                       |                                                                                                                       |                         |                                                                                                                                                             |
| FDOI                        |                                                                                                                       |                         | PLS FORWARD FSOI TO MGT                                                                                                                                     |
| RRAI                        | × × ×                                                                                                                 |                         |                                                                                                                                                             |
|                             |                                                                                                                       | 20                      |                                                                                                                                                             |
|                             |                                                                                                                       |                         |                                                                                                                                                             |
|                             |                                                                                                                       |                         |                                                                                                                                                             |
|                             |                                                                                                                       |                         |                                                                                                                                                             |
|                             |                                                                                                                       |                         | Religiated as i                                                                                                                                             |
|                             |                                                                                                                       |                         | Callifea (Calling)                                                                                                                                          |
|                             |                                                                                                                       |                         | 1                                                                                                                                                           |
|                             |                                                                                                                       |                         | t'lon.                                                                                                                                                      |
| TOTAL NUMBER OF SAMPLES:    | LES: 6 GENERAL COMMENTS: & PFAS EXTENDED                                                                              | ID SVITE (AUS)          |                                                                                                                                                             |
| TOTAL NUMBER OF ESKIES:     |                                                                                                                       |                         |                                                                                                                                                             |
| SAMPLES/ESKY CHILLED? Y / N | I VIV                                                                                                                 |                         | *                                                                                                                                                           |
| CUSTODY DETAILS:            | Name Date/Time Received                                                                                               | Date/Time Relinquished  | Con la true                                                                                                                                                 |
| SAMPLER                     | C. WINES 24/01/17 8                                                                                                   | Ann 25/01/17            |                                                                                                                                                             |
| GHD SERVICE CENTRE          | VICK 25/01/17 9                                                                                                       | 15 mm                   | 10:23 an 12/0/2011                                                                                                                                          |
| LABORATORY                  | THE2 En (My) 25/117 1                                                                                                 | y. 200 Jimp             | 4 0-1mgt 53/947                                                                                                                                             |
| LABORATORY                  | + (1) (2) (2)                                                                                                         | 11                      |                                                                                                                                                             |



GHD Melbourne Level 8, 180 Lonsdale St Melbourne VIC 3000





NATA Accredited Accreditation Number 1261 Site Number 1254

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

# Attention:

# **Courtney Wines**

Report Project name Received Date **531947-W** DENILIQUIN PFAS INVESTIGATION Jan 27, 2017

| Client Sample ID                                               |         |          | FS01                   |
|----------------------------------------------------------------|---------|----------|------------------------|
| Sample Matrix                                                  |         |          | Water                  |
| Eurofins   mgt Sample No.                                      |         |          | M17-Ja16913            |
| Date Sampled                                                   |         |          | Jan 24, 2017           |
| Test/Reference                                                 | LOR     | Unit     |                        |
| Per- and Polyfluorinated Alkyl Substances (PFASs)              |         |          |                        |
| Perfluorobutanesulfonic acid (PFBS)                            | 0.00001 | mg/L     | 0.00008                |
| Perfluorobutanoic acid (PFBA)                                  | 0.00005 | mg/L     | < 0.00005              |
| Perfluorohexanesulfonic acid (PFHxS)                           | 0.00001 | mg/L     | <sup>N09</sup> 0.00013 |
| Perfluorooctanesulfonic acid (PFOS)                            | 0.00001 | mg/L     | <sup>N09</sup> 0.00035 |
| Perfluorodecanesulfonic acid (PFDS)                            | 0.00001 | mg/L     | < 0.00001              |
| Perfluoropentanoic acid (PFPeA)                                | 0.00001 | mg/L     | <sup>N09</sup> 0.00006 |
| Perfluorohexanoic acid (PFHxA)                                 | 0.00001 | mg/L     | <sup>N09</sup> 0.00016 |
| Perfluoroheptanoic acid (PFHpA)                                | 0.00001 | mg/L     | <sup>N09</sup> 0.00003 |
| Perfluorooctanoic acid (PFOA)                                  | 0.00001 | mg/L     | <sup>N09</sup> 0.00001 |
| Perfluorononanoic acid (PFNA)                                  | 0.00001 | mg/L     | < 0.00001              |
| Perfluorodecanoic acid (PFDA)                                  | 0.00001 | mg/L     | < 0.00001              |
| Perfluoroundecanoic acid (PFUnA)                               | 0.00001 | mg/L     | < 0.00001              |
| Perfluorododecanoic acid (PFDoA)                               | 0.00001 | mg/L     | < 0.00001              |
| Perfluorotridecanoic acid (PFTrDA)                             | 0.00001 | mg/L     | < 0.00001              |
| Perfluorotetradecanoic acid (PFTeDA)                           | 0.00001 | mg/L     | < 0.00001              |
| Perfluorooctane sulfonamide (FOSA)                             | 0.00005 | mg/L     | < 0.00005              |
| N-ethyl-perfluorooctanesulfonamidoacetic acid (N-<br>EtFOSAA)  | 0.00005 | mg/L     | < 0.00005              |
| N-methyl-perfluorooctanesulfonamidoacetic acid (N-<br>MeFOSAA) | 0.00005 | mg/L     | < 0.00005              |
| 1H.1H.2H.2H-perfluorohexanesulfonic acid (4:2 FTS)             | 0.00001 | mg/L     | < 0.00001              |
| 1H.1H.2H.2H-perfluorooctanesulfonic acid (6:2 FTS)             | 0.00005 | mg/L     | < 0.00005              |
| 1H.1H.2H.2H-perfluorodecanesulfonic acid (8:2 FTS)             | 0.00001 | mg/L     | < 0.00001              |
| D5-N-EtFOSAA (surr.)                                           | 1       | %        | 31                     |
| 13C5-PFHxA (surr.)                                             | 1       | %        | 117                    |
| 13C8-PFOS (surr.)                                              | 1       | %        | 95                     |
|                                                                | 1       |          |                        |
| рН                                                             | 0.1     | pH Units | 8.3                    |
| Total Dissolved Solids                                         | 10      | mg/L     | 1000                   |



### Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

| Description                                                                  | Testing Site | Extracted    | Holding Time |
|------------------------------------------------------------------------------|--------------|--------------|--------------|
| Per- and Polyfluorinated Alkyl Substances (PFASs)                            | Brisbane     | Jan 31, 2017 | 14 Day       |
| - Method: LTM-ORG-2100 Per- and Polyfluorinated Alkyl Substances by LC-MS/MS |              |              |              |
| рН                                                                           | Melbourne    | Jan 30, 2017 | 0 Hours      |
| - Method: LTM-GEN-7090 pH in water by ISE                                    |              |              |              |
| Total Dissolved Solids                                                       | Melbourne    | Jan 30, 2017 | 7 Day        |
| - Method: LM-LTM-INO-4110 (Total Dissolved Solids @ 178°C - 182°C)           |              |              |              |

| ABN- 50 005 085 521<br>e.mail : EnviroSales@eurofins.ow<br>web : www.eurofins.com.au            | Melbourne         Sydney         Brisbane         Perth           2-5 Kingston Town Close         Unit F3, Building F         1/21 Smallwood Place         2/91 Leach Highway           Oakleigh VIC 3166         16 Mars Road         Murarrie QLD 4172         Kewdale WA 6105           Phone : +61 3 8564 5000         Lane Cove West NSW 2066         Phone : +61 7 3902 4600         Phone : +61 8 9251 9600           com         NATA # 1261         Phone : +61 2 9900 8400         NATA # 1261 Site # 20794         NATA # 1261           site # 1254 & 14271         NATA # 1261 Site # 18217         Site # 18217         Site # 18217 |
|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Address: Level 8, 180 Lonsdale St Rep                                                           | Ier No.:       Received:       Jan 27, 2017 3:56 PM         port #:       531947       Due:       Feb 3, 2017         pone:       8687 8000       Priority:       5 Day         ::       8687 8111       Contact Name:       Courtney Wines         Eurofins   mgt Analytical Services Manager : Mary Makarios                                                                                                                                                                                                                                                                                                                                     |
| Sample Detail                                                                                   | Per-and Polyfluorinated Alkyl Substances                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Melbourne Laboratory - NATA Site # 1254 & 14271         X         X                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Sydney Laboratory - NATA Site # 18217                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Brisbane Laboratory - NATA Site # 20794                                                         | <u>x</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Perth Laboratory - NATA Site # 18217 External Laboratory                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| No         Sample ID         Sample Date         Sampling<br>Time         Matrix         LAB ID |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1         FS01         Jan 24, 2017         Water         M17-Ja16913         X         X       | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Test Counts 1 1                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |



### Internal Quality Control Review and Glossary

### General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 4. Results are uncorrected for matrix spikes or surrogate recoveries.
- 5. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 6. Samples were analysed on an 'as received' basis. 7. This report replaces any interim results previously issued.

### **Holding Times**

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Advice.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported. Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

\*\*NOTE: pH duplicates are reported as a range NOT as RPD

### Units

Tormo

 mg/kg: milligrams per Kilogram
 mg/l: milligrams per litre

 ug/l: micrograms per litre
 ppm: Parts per million

 ppb: Parts per billion
 %: Percentage

 org/100ml: Organisms per 100 millilitres
 NTU: Nephelometric Turbidity Units

 MPN/100mL: Most Probable Number of organisms per 100 millilitres
 Hercentage

| Terms            |                                                                                                                                                                   |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Dry              | Where a moisture has been determined on a solid sample the result is expressed on a dry basis.                                                                    |
| LOR              | Limit of Reporting.                                                                                                                                               |
| SPIKE            | Addition of the analyte to the sample and reported as percentage recovery.                                                                                        |
| RPD              | Relative Percent Difference between two Duplicate pieces of analysis.                                                                                             |
| LCS              | Laboratory Control Sample - reported as percent recovery                                                                                                          |
| CRM              | Certified Reference Material - reported as percent recovery                                                                                                       |
| Method Blank     | In the case of solid samples these are performed on laboratory certified clean sands.                                                                             |
|                  | In the case of water samples these are performed on de-ionised water.                                                                                             |
| Surr - Surrogate | The addition of a like compound to the analyte target and reported as percentage recovery.                                                                        |
| Duplicate        | A second piece of analysis from the same sample and reported in the same units as the result to show comparison.                                                  |
| Batch Duplicate  | A second piece of analysis from a sample outside of the clients batch of samples but run within the laboratory batch of analysis.                                 |
| Batch SPIKE      | Spike recovery reported on a sample from outside of the clients batch of samples but run within the laboratory batch of analysis.                                 |
| USEPA            | United States Environmental Protection Agency                                                                                                                     |
| APHA             | American Public Health Association                                                                                                                                |
| TCLP             | Toxicity Characteristic Leaching Procedure                                                                                                                        |
| COC              | Chain of Custody                                                                                                                                                  |
| SRA              | Sample Receipt Advice                                                                                                                                             |
| CP               | Client Parent - QC was performed on samples pertaining to this report                                                                                             |
| NCP              | Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within |
| TEQ              | Toxic Equivalency Quotient                                                                                                                                        |
|                  |                                                                                                                                                                   |

### **QC - Acceptance Criteria**

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 50-150%-Phenols & PFASs 20-130%

### **QC Data General Comments**

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.



### **Quality Control Results**

| Test                                                       | Units    | Result 1  |         | Acceptance<br>Limits | Pass<br>Limits | Qualifying<br>Code |
|------------------------------------------------------------|----------|-----------|---------|----------------------|----------------|--------------------|
| Method Blank                                               |          |           | • • • • |                      |                |                    |
| Per- and Polyfluorinated Alkyl Substances (PFASs)          |          |           |         |                      |                |                    |
| Perfluorobutanesulfonic acid (PFBS)                        | mg/L     | < 0.00001 |         | 0.00001              | Pass           |                    |
| Perfluorobutanoic acid (PFBA)                              | mg/L     | < 0.00005 |         | 0.00005              | Pass           |                    |
| Perfluorohexanesulfonic acid (PFHxS)                       | mg/L     | < 0.00001 |         | 0.00001              | Pass           |                    |
| Perfluorooctanesulfonic acid (PFOS)                        | mg/L     | < 0.00001 |         | 0.00001              | Pass           |                    |
| Perfluorodecanesulfonic acid (PFDS)                        | mg/L     | < 0.00001 |         | 0.00001              | Pass           |                    |
| Perfluoropentanoic acid (PFPeA)                            | mg/L     | < 0.00001 |         | 0.00001              | Pass           |                    |
| Perfluorohexanoic acid (PFHxA)                             | mg/L     | < 0.00001 |         | 0.00001              | Pass           |                    |
| Perfluoroheptanoic acid (PFHpA)                            | mg/L     | < 0.00001 |         | 0.00001              | Pass           |                    |
| Perfluorooctanoic acid (PFOA)                              | mg/L     | < 0.00001 |         | 0.00001              | Pass           |                    |
| Perfluorononanoic acid (PFNA)                              | mg/L     | < 0.00001 |         | 0.00001              | Pass           |                    |
| Perfluorodecanoic acid (PFDA)                              | mg/L     | < 0.00001 |         | 0.00001              | Pass           |                    |
| Perfluoroundecanoic acid (PFUnA)                           | mg/L     | < 0.00001 |         | 0.00001              | Pass           |                    |
| Perfluorododecanoic acid (PFDoA)                           | mg/L     | < 0.00001 |         | 0.00001              | Pass           |                    |
| Perfluorotridecanoic acid (PFTrDA)                         | mg/L     | < 0.00001 |         | 0.00001              | Pass           |                    |
| Perfluorotetradecanoic acid (PFTeDA)                       | mg/L     | < 0.00001 |         | 0.00001              | Pass           |                    |
| Perfluorooctane sulfonamide (FOSA)                         | mg/L     | < 0.00005 |         | 0.00005              | Pass           |                    |
| N-ethyl-perfluorooctanesulfonamidoacetic acid (N-EtFOSAA)  | mg/L     | < 0.00005 |         | 0.00005              | Pass           |                    |
| N-methyl-perfluorooctanesulfonamidoacetic acid (N-MeFOSAA) | mg/L     | < 0.00005 |         | 0.00005              | Pass           |                    |
| 1H.1H.2H.2H-perfluorohexanesulfonic acid (4:2 FTS)         | mg/L     | < 0.00001 |         | 0.00001              | Pass           |                    |
| 1H.1H.2H.2H-perfluorooctanesulfonic acid (6:2 FTS)         | mg/L     | < 0.00005 |         | 0.00005              | Pass           |                    |
| 1H.1H.2H.2H-perfluorodecanesulfonic acid (8:2 FTS)         | mg/L     | < 0.00001 |         | 0.00001              | Pass           |                    |
| Method Blank                                               |          |           | · · ·   |                      |                |                    |
| Total Dissolved Solids                                     | mg/L     | < 10      |         | 10                   | Pass           |                    |
| LCS - % Recovery                                           | <u> </u> |           |         |                      |                |                    |
| Per- and Polyfluorinated Alkyl Substances (PFASs)          |          |           |         |                      |                |                    |
| Perfluorobutanesulfonic acid (PFBS)                        | %        | 78        |         | 50-150               | Pass           |                    |
| Perfluorobutanoic acid (PFBA)                              | %        | 102       |         | 50-150               | Pass           |                    |
| Perfluorohexanesulfonic acid (PFHxS)                       | %        | 80        |         | 50-150               | Pass           |                    |
| Perfluorooctanesulfonic acid (PFOS)                        | %        | 106       |         | 50-150               | Pass           |                    |
| Perfluorodecanesulfonic acid (PFDS)                        | %        | 50        |         | 50-150               | Pass           |                    |
| Perfluoropentanoic acid (PFPeA)                            | %        | 73        |         | 50-150               | Pass           |                    |
| Perfluorohexanoic acid (PFHxA)                             | %        | 103       |         | 50-150               | Pass           |                    |
| Perfluoroheptanoic acid (PFHpA)                            | %        | 84        |         | 50-150               | Pass           |                    |
| Perfluorooctanoic acid (PFOA)                              | %        | 103       |         | 50-150               | Pass           |                    |
| Perfluorononanoic acid (PFNA)                              | %        | 94        |         | 50-150               | Pass           |                    |
| Perfluorodecanoic acid (PFDA)                              | %        | 78        |         | 50-150               | Pass           |                    |
| Perfluoroundecanoic acid (PFUnA)                           | %        | 61        |         | 50-150               | Pass           |                    |
| Perfluorododecanoic acid (PFDoA)                           | %        | 50        |         | 50-150               | Pass           |                    |
| Perfluorotridecanoic acid (PFTrDA)                         | %        | 51        |         | 50-150               | Pass           |                    |
| Perfluorotetradecanoic acid (PFTeDA)                       | %        | 52        |         | 50-150               | Pass           |                    |
| Perfluorooctane sulfonamide (FOSA)                         | %        | 73        |         | 50-150               | Pass           |                    |
| N-ethyl-perfluorooctanesulfonamidoacetic acid (N-EtFOSAA)  | %        | 58        |         | 50-150               | Pass           |                    |
| N-methyl-perfluorooctanesulfonamidoacetic acid (N-MeFOSAA) | %        | 56        |         | 50-150               | Pass           |                    |
| 1H.1H.2H.2H-perfluorohexanesulfonic acid (4:2 FTS)         | %        | 59        |         | 50-150               | Pass           |                    |
| 1H.1H.2H.2H-perfluorooctanesulfonic acid (6:2 FTS)         | %        | 101       |         | 50-150               | Pass           |                    |
| 1H.1H.2H.2H-perfluorodecanesulfonic acid (8:2 FTS)         | %        | 64        |         | 50-150               | Pass           |                    |
| LCS - % Recovery                                           |          |           |         | 00 100               |                |                    |
| Total Dissolved Solids                                     | %        | 98        |         | 70-130               | Pass           |                    |



| Test                                                             | Lab Sample ID   | QA<br>Source | Units | Result 1  |           |     | Acceptance<br>Limits | Pass<br>Limits | Qualifying<br>Code |
|------------------------------------------------------------------|-----------------|--------------|-------|-----------|-----------|-----|----------------------|----------------|--------------------|
| Spike - % Recovery                                               |                 |              |       | •         |           |     | 1                    |                |                    |
| Per- and Polyfluorinated Alkyl Sub                               | stances (PFASs) | ,            |       | Result 1  |           |     |                      |                |                    |
| Perfluorobutanesulfonic acid (PFBS)                              | S17-Ja09699     | NCP          | %     | 96        |           |     | 50-150               | Pass           |                    |
| Perfluorobutanoic acid (PFBA)                                    | S17-Ja09699     | NCP          | %     | 96        |           |     | 50-150               | Pass           |                    |
| Perfluorohexanesulfonic acid<br>(PFHxS)                          | S17-Ja09699     | NCP          | %     | 103       |           |     | 50-150               | Pass           |                    |
| Perfluorooctanesulfonic acid<br>(PFOS)                           | S17-Ja09699     | NCP          | %     | 100       |           |     | 50-150               | Pass           |                    |
| Perfluorodecanesulfonic acid (PFDS)                              | S17-Ja09699     | NCP          | %     | 51        |           |     | 50-150               | Pass           |                    |
| Perfluoropentanoic acid (PFPeA)                                  | S17-Ja09699     | NCP          | %     | 92        |           |     | 50-150               | Pass           |                    |
| Perfluorohexanoic acid (PFHxA)                                   | S17-Ja09699     | NCP          | %     | 92        |           |     | 50-150               | Pass           |                    |
| Perfluoroheptanoic acid (PFHpA)                                  | S17-Ja09699     | NCP          | %     | 109       |           |     | 50-150               | Pass           |                    |
| Perfluorooctanoic acid (PFOA)                                    | S17-Ja09699     | NCP          | %     | 96        |           |     | 50-150               | Pass           |                    |
| Perfluorononanoic acid (PFNA)                                    | S17-Ja09699     | NCP          | %     | 119       |           |     | 50-150               | Pass           |                    |
| Perfluorodecanoic acid (PFDA)                                    | S17-Ja09699     | NCP          | %     | 86        |           |     | 50-150               | Pass           |                    |
| Perfluoroundecanoic acid (PFUnA)                                 | S17-Ja09699     | NCP          | %     | 70        |           |     | 50-150               | Pass           |                    |
| Perfluorododecanoic acid (PFDoA)                                 | S17-Ja09699     | NCP          | %     | 52        |           |     | 50-150               | Pass           |                    |
| Perfluorotridecanoic acid (PFTrDA)                               | S17-Ja09699     | NCP          | %     | 54        |           |     | 50-150               | Pass           |                    |
| Perfluorotetradecanoic acid<br>(PFTeDA)                          | S17-Ja09699     | NCP          | %     | 61        |           |     | 50-150               | Pass           |                    |
| Perfluorooctane sulfonamide                                      |                 |              |       |           |           |     |                      |                |                    |
| (FOSA)                                                           | S17-Ja09699     | NCP          | %     | 64        |           |     | 50-150               | Pass           |                    |
| N-ethyl-<br>perfluorooctanesulfonamidoacetic<br>acid (N-EtFOSAA) | S17-Ja09699     | NCP          | %     | 53        |           |     | 50-150               | Pass           |                    |
| N-methyl-                                                        |                 |              | ,,,   |           |           |     |                      |                |                    |
| perfluorooctanesulfonamidoacetic<br>acid (N-MeFOSAA)             | S17-Ja09699     | NCP          | %     | 52        |           |     | 50-150               | Pass           |                    |
| 1H.1H.2H.2H-<br>perfluorohexanesulfonic acid (4:2<br>FTS)        | S17-Ja09699     | NCP          | %     | 81        |           |     | 50-150               | Pass           |                    |
| 1H.1H.2H.2H-<br>perfluorooctanesulfonic acid (6:2                |                 |              |       |           |           |     |                      |                |                    |
| FTS)                                                             | S17-Ja09699     | NCP          | %     | 90        |           |     | 50-150               | Pass           |                    |
| 1H.1H.2H.2H-<br>perfluorodecanesulfonic acid (8:2<br>FTS)        | S17-Ja09699     | NCP          | %     | 63        |           |     | 50-150               | Pass           |                    |
| Test                                                             | Lab Sample ID   | QA           | Units | Result 1  |           |     | Acceptance           | Pass           | Qualifying         |
|                                                                  | Lub Gumple IB   | Source       | onito | Result 1  |           |     | Limits               | Limits         | Code               |
| Duplicate                                                        |                 |              |       | 1         |           |     |                      |                |                    |
| Per- and Polyfluorinated Alkyl Sub                               | stances (PFASs) |              |       | Result 1  | Result 2  | RPD |                      |                |                    |
| Perfluorobutanesulfonic acid (PFBS)                              | B17-Fe04499     | NCP          | mg/L  | < 0.00001 | < 0.00001 | <1  | 30%                  | Pass           |                    |
| Perfluorobutanoic acid (PFBA)                                    | B17-Fe04499     | NCP          | mg/L  |           | < 0.00005 | <1  | 30%                  | Pass           |                    |
| Perfluorohexanesulfonic acid<br>(PFHxS)                          | B17-Fe04499     | NCP          | mg/L  | < 0.00001 | < 0.00001 | <1  | 30%                  | Pass           |                    |
| Perfluorooctanesulfonic acid (PFOS)                              | B17-Fe04499     | NCP          | mg/L  | < 0.00001 | < 0.00001 | <1  | 30%                  | Pass           |                    |
| Perfluorodecanesulfonic acid<br>(PFDS)                           | B17-Fe04499     | NCP          | mg/L  | < 0.00001 | < 0.00001 | <1  | 30%                  | Pass           |                    |
| Perfluoropentanoic acid (PFPeA)                                  | B17-Fe04499     | NCP          | mg/L  | < 0.00001 | < 0.00001 | <1  | 30%                  | Pass           |                    |
| Perfluorohexanoic acid (PFHxA)                                   | B17-Fe04499     | NCP          | mg/L  | < 0.00001 | < 0.00001 | <1  | 30%                  | Pass           |                    |
| Perfluoroheptanoic acid (PFHpA)                                  | B17-Fe04499     | NCP          | mg/L  | < 0.00001 | < 0.00001 | <1  | 30%                  | Pass           |                    |
| Perfluorooctanoic acid (PFOA)                                    | B17-Fe04499     | NCP          | mg/L  | < 0.00001 | < 0.00001 | <1  | 30%                  | Pass           |                    |
| Perfluorononanoic acid (PFNA)                                    | B17-Fe04499     | NCP          | mg/L  | < 0.00001 | < 0.00001 | <1  | 30%                  | Pass           |                    |
| Perfluorodecanoic acid (PFDA)                                    | B17-Fe04499     | NCP          | mg/L  | < 0.00001 | < 0.00001 | <1  | 30%                  | Pass           |                    |
| Perfluoroundecanoic acid (PFUnA)                                 | B17-Fe04499     | NCP          | mg/L  | < 0.00001 | < 0.00001 | <1  | 30%                  | Pass           |                    |
| Perfluorododecanoic acid (PFDoA)                                 | B17-Fe04499     | NCP          | mg/L  | < 0.00001 | < 0.00001 | <1  | 30%                  | Pass           |                    |
| Perfluorotridecanoic acid (PFTrDA)                               | B17-Fe04499     | NCP          | mg/L  | < 0.00001 | < 0.00001 | <1  | 30%                  | Pass           |                    |



| Test                                                              | Lab Sample ID   | QA<br>Source | Units    | Result 1  |           |      | Acceptance<br>Limits | Pass<br>Limits | Qualifying<br>Code |
|-------------------------------------------------------------------|-----------------|--------------|----------|-----------|-----------|------|----------------------|----------------|--------------------|
| Duplicate                                                         |                 |              |          |           |           |      |                      |                |                    |
| Per- and Polyfluorinated Alkyl Sub                                | stances (PFASs) |              |          | Result 1  | Result 2  | RPD  |                      |                |                    |
| Perfluorotetradecanoic acid<br>(PFTeDA)                           | B17-Fe04499     | NCP          | mg/L     | < 0.00001 | < 0.00001 | <1   | 30%                  | Pass           |                    |
| Perfluorooctane sulfonamide (FOSA)                                | B17-Fe04499     | NCP          | mg/L     | < 0.00005 | < 0.00005 | <1   | 30%                  | Pass           |                    |
| N-ethyl-<br>perfluorooctanesulfonamidoacetic<br>acid (N-EtFOSAA)  | B17-Fe04499     | NCP          | mg/L     | < 0.00005 | < 0.00005 | <1   | 30%                  | Pass           |                    |
| N-methyl-<br>perfluorooctanesulfonamidoacetic<br>acid (N-MeFOSAA) | B17-Fe04499     | NCP          | mg/L     | < 0.00005 | < 0.00005 | <1   | 30%                  | Pass           |                    |
| 1H.1H.2H.2H-<br>perfluorohexanesulfonic acid (4:2<br>FTS)         | B17-Fe04499     | NCP          | mg/L     | < 0.00001 | < 0.00001 | <1   | 30%                  | Pass           |                    |
| 1H.1H.2H.2H-<br>perfluorooctanesulfonic acid (6:2<br>FTS)         | B17-Fe04499     | NCP          | mg/L     | < 0.00005 | < 0.00005 | <1   | 30%                  | Pass           |                    |
| 1H.1H.2H.2H-<br>perfluorodecanesulfonic acid (8:2<br>FTS)         | B17-Fe04499     | NCP          | mg/L     | < 0.00001 | < 0.00001 | <1   | 30%                  | Pass           |                    |
| Duplicate                                                         |                 |              |          | -         |           |      |                      |                |                    |
|                                                                   |                 |              |          | Result 1  | Result 2  | RPD  |                      |                |                    |
| рН                                                                | M17-Ja16351     | NCP          | pH Units | 7.5       | 7.5       | pass | 30%                  | Pass           |                    |
| Total Dissolved Solids                                            | M17-Ja16326     | NCP          | mg/L     | 9400      | -9052440  | <1   | 30%                  | Pass           |                    |



### Comments

| Sample Integrity                                                        |     |
|-------------------------------------------------------------------------|-----|
| Custody Seals Intact (if used)                                          | N/A |
| Attempt to Chill was evident                                            | Yes |
| Sample correctly preserved                                              | Yes |
| Appropriate sample containers have been used                            | Yes |
| Sample containers for volatile analysis received with minimal headspace | Yes |
| Samples received within HoldingTime                                     | Yes |
| Some samples have been subcontracted                                    | No  |

### **Qualifier Codes/Comments**

CodeDescriptionN09Quantification of linear and branched isomers has been conducted as a single total response using the relative response factor for the corresponding linear/branched standard.

### Authorised By

Mary Makarios Huong Le Jonathon Angell Analytical Services Manager Senior Analyst-Inorganic (VIC) Senior Analyst-Organic (QLD)

# Glenn Jackson National Operations Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested

- \* Indicates NATA accreditation does not cover the performance of this service
- Measurement uncertainty of test data is available on request or please click here.

Eurofins | mgt shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins | mgt be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

**Appendix F** – Assessment of data quality

# **Quality Assurance and Quality Control Report**

# **Data Quality Indicators**

Data generated during this investigation must be appropriate to allow decisions to be made with confidence. Specific limits for this investigation have been adopted in accordance with guidance from the AS4482.1 which includes appropriate indicators of data quality (data quality indicators [DQIs] used to assess QA/QC, and GHD's Standard Field Operating Procedures).

To assess the usability of the data prior to making decisions, the data is assessed against predetermined DQIs. The DQIs including precision, accuracy, representativeness, comparability and completeness, will be reviewed at the completion of the investigation works to assess for the presence of decision errors.

The pre-determined DQIs established for the investigation are discussed below and shown in Table 1.

- Precision measures the reproducibility of measurements under a given set of conditions. The precision of the laboratory data and sampling techniques is assessed by calculating the Relative Percentage Difference (RPD) of duplicate samples.
- Accuracy measures the bias in a measurement system. The accuracy of the laboratory data that are generated during this investigation is a measure of the closeness of the analytical results obtained by a method to the 'true' (or standard) value. Accuracy is assessed by reference to the analytical results of laboratory control samples, laboratory spikes and analyses against reference standards.
- Representativeness expresses the degree to which sample data accurately and precisely represent a characteristic of a population or an environmental condition. Representativeness is achieved by collecting samples on a representative basis across the site, and by using an adequate number of sample locations to characterise the site to the required accuracy.
- Comparability expresses the confidence with which one data set can be compared with another. This is achieved through maintaining a level of consistency in techniques used to collect samples; ensuring analysing laboratories use consistent analysis techniques and reporting methods.
- Completeness is defined as the percentage of measurements made which are judged to be valid measurements.

# Table 1 Summary of quality assurance / quality control criteria for groundwater

| Data quality indicator                                                                                   | Frequency                                                 | Data quality<br>acceptance criteria                |
|----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|----------------------------------------------------|
| Precision                                                                                                |                                                           |                                                    |
| Inter/ intra duplicates                                                                                  | 1 / 10 samples                                            | <30-50% RPD                                        |
| Accuracy                                                                                                 |                                                           |                                                    |
| Surrogate spikes<br>Laboratory control samples<br>Matrix spikes                                          | All organic samples<br>1 per lab batch<br>1 per lab batch | 70-130%<br><lor<br>70-130%</lor<br>                |
| Representativeness                                                                                       |                                                           |                                                    |
| Sampling appropriate for media and<br>analytes<br>Samples extracted and analysed within<br>holding times | All samples<br>All samples                                | -<br>Organics (7-14 days)<br>Inorganics (6 months) |

| Data quality indicator                                                                                     | Frequency         | Data quality<br>acceptance criteria                         |
|------------------------------------------------------------------------------------------------------------|-------------------|-------------------------------------------------------------|
|                                                                                                            |                   | Some exceptions to these holding times are listed below (1) |
| LORs appropriate and consistent                                                                            | All samples       | All samples                                                 |
| Comparability                                                                                              |                   |                                                             |
| Consistent field conditions, sampling staff and laboratory analysis                                        | All samples       | All samples                                                 |
| Standard operating procedures for sample collection & handling                                             | All samples       | All samples                                                 |
| Standard analytical methods used for all analyses                                                          | All samples       | All samples                                                 |
| Completeness                                                                                               |                   |                                                             |
| Sample description and COCs completed and appropriate                                                      | All Samples       | All Samples                                                 |
| Appropriate documentation                                                                                  | All Samples       | All Samples                                                 |
| Satisfactory frequency and result for<br>QA/QC samples                                                     | All QA/QC samples | -                                                           |
| Data from critical samples is considered valid                                                             | -                 | Critical samples valid                                      |
| Acronyms<br>COC: Chain of Custody<br>LOR: Limit of Reporting<br>QA/QC: Quality assurance / quality control |                   |                                                             |

<sup>1</sup> Holding times with exception to the above include:

If any of the DQIs are not met, further investigation will be necessary to determine whether the non-conformance will significantly affect the usefulness of the data.

# Field quality assurance and quality control

The quality assurance/quality control (QA/QC) procedures are based on NSW EPA *Guidelines for the Site Auditor Scheme* (2006) and AS 4482.1 – 2005 and AS 4482.2 – 1999.

QA involves all the actions, procedures, checks and decisions undertaken to ensure the representativeness and integrity of samples and accuracy and reliability of analytical results (NEPC 2013). QC involves protocols to monitor and measure the effectiveness of QA procedures.

All fieldwork was conducted with reference to the Australian Standards AS 4482.1 – 2005 and AS 4482.2 – 1999 and GHD's Standard Field Operating Procedures which ensure all samples are collected by a set of uniform and systematic methods, as required by GHD's QA system. Key requirements of these procedures are listed below:

- Decontamination procedures including washing and rinsing of re-useable equipment, the use of new disposable gloves and sampling tubing between each sampling location and the use of sampling containers provided by the laboratory.
- Sample identification procedures samples were immediately transferred to sample containers of appropriate composition and preservation for the required laboratory analysis. All sample containers were clearly labelled with a sample number, job number, and sample date. The sample containers were then transferred to a chilled insulated container for sample preservation prior to and during shipment to the analytical laboratory.

- Chain of custody information requirements a chain of custody form was completed and forwarded to the testing laboratory with the samples.
- Inter and intra duplicate and sample frequency.
- Calibration was undertaken by the rental supplier and certificates are provided in Appendix C
- Field instrument field checks were undertaken on the equipment:
  - Interface probe: A daily equipment check was undertaken to ensure that the equipment worked correctly when immersed in water.
  - Low flow pump: The low flow sampling equipment was provided by the equipment supplier in good working condition. The equipment was inspected by GHD at the start of each day to ensure that all parts of the equipment were in good working order.
     Purge volumes were recorded on the groundwater sampling field sheets for each site.

# Sampling and analysis quality control

The QC samples collected during the investigation are described below.

- Intra laboratory duplicate: Intra duplicates are used to identify the variation in the analyte concentration between samples from the same sampling point and the repeatability of the laboratory's analysis.
- Inter laboratory duplicate: Inter duplicates provide an indication of the repeatability of the results between laboratories.

| Sample | Recommended sampling rate | Media    | No. QC samples | No. of<br>primary<br>samples | Total |
|--------|---------------------------|----------|----------------|------------------------------|-------|
| Intra  | 1/10 samples              | Soil and | 2              | 25                           | 29    |
| Inter  | 1/10 samples              | sediment | 2              |                              |       |
| Intra  | 1/10 samples              | Water    | 2              | 6                            | 9     |
| Inter  | 1/10 samples              |          | 1              |                              |       |

# Table 2 Quality control (QC) sampling frequency

All quality control sampling frequency criteria were met during this investigation.

# **Relative percentage difference calculations**

Relative percentage difference (RPD) calculations are used to assess how closely primary and inter/intra duplicate sample results match. RPDs are a quantitative measure of the accuracy of the analytical results and are calculated in accordance with the procedure described in *AS* 4482.1 - 2005 (Standards Australia 2005). According to *AS* 4482.1 - 2005 typical RPDs are expected to range between 30% and 50%; however, this may be higher for organics and for low concentrations of analytes. GHD adopts 30% for inorganics and 50% for organics as the general assessment criteria.

Where a result is below the laboratory limit of reporting (LOR) for one of the paired samples, the concentration assigned to that sample is the LOR. Where both results are reported below laboratory LOR the RPD is not calculated.

The QC samples analysed during the groundwater investigation are listed in Table 3.

| Primary<br>sample | Duplicate<br>type | QC sample<br>laboratory ID | QC<br>sample<br>field ID | Date<br>sampled | Lab report<br>number | Matrix           |
|-------------------|-------------------|----------------------------|--------------------------|-----------------|----------------------|------------------|
| SB01_1.0          | Intra             | EM1614608-<br>023          | FD02                     | 30/11/2016      | EM1614608            | Soil             |
| SB04_2.0          | Intra             | EM1614608-<br>031          | FD03                     | 30/11/2016      | EM1614608            | Soil             |
| SB01_1.0          | Inter             | EM1614608-<br>023          | FS02                     | 30/11/2016      | 526459               | Soil             |
| SB04_2.0          | Inter             | EM1614608-<br>031          | FS03                     | 30/11/2016      | 526459               | Soil             |
| SW03              | Intra             | EM1614608-<br>010          | FD01                     | 29/11/2016      | EM1614608            | Surface<br>water |
| MW01              | Intra             | EM1700781-<br>001          | FD01                     | 24/01/2017      | EM1700781            | Ground water     |
| SW03              | Inter             | EM1614608-<br>010          | FS01                     | 29/11/2016      | EM1614608            | Surface<br>water |

# Table 3 Analysed quality control (QC) samples

RPD exceedances were reported during this investigation.

FD02 – Primary sample SB01\_1.0 - Perfluorohexane sulfonic acid (PFHxS) 84% Perfluorooctane sulfonic acid (PFOS) 128%

- FD03 Primary sample SB04\_2.0 Perfluorobutane sulfonic acid 50% Perfluoropentanoic acid 53% Perfluoropentane sulfonic acid 149% Perfluorohexanoic acid (PFHxA) 104% Perfluorooctane sulfonic acid (PFOS) 176%
- FS02 Primary sample SB01\_1.0 total organic carbon 57% Perfluorooctane sulfonic acid (PFOS) 127%

FS03 – Primary sample SB04\_2.0 – Perfluorohexanoic acid (PFHxA) 90% Perfluorooctane sulfonic acid (PFOS) 80%

FS01 – Primary sample SW03 – Perfluorohexane sulfonic acid (PFHxS) 53%

Perfluorohexanoic acid (PFHxA) 91%

# Laboratory quality assurance / quality control

Laboratory methods used by the primary laboratory were suitable for environmental contaminant analysis and are based on established internationally recognised procedures such as those published by the United States Environmental Protection Agency (US EPA), American Public Health Association (APHA), AS and National Environment Protection (Assessment of Site Contamination) Measure (NEPM).

The individual testing laboratory conducted an assessment of the laboratory QC program however the results were also independently reviewed and assessed internally by GHD. Recovery targets below are defined in the ALS QA/QC section of the certificates of analysis reports. All laboratory QA/QC results are documented with the laboratory certificates of analysis in the appendices of the relevant site report.

# Laboratory quality control procedures

Laboratory QC samples incorporated in the analytical process include:

# Laboratory blind duplicate samples

A laboratory blind duplicate provides data on the analytical precision and reproducibility of the analytical result. The laboratory blind duplicate is created by sub sampling from one of the primary samples submitted for analysis. Laboratory blind duplicates are analysed at a rate equivalent to one in twenty samples per analytical batch, or one sample per batch if less than twenty samples are analysed in a batch.

The permitted ranges for the RPD of laboratory blind duplicates are dependent on the magnitude of the results in comparison to the level of reporting as shown in Table 4.

# Table 4 Permitted laboratory blind duplicate relative percentage difference (RPD) ranges

| Magnitude of result             | Permitted RPD range |
|---------------------------------|---------------------|
| < 10 x limit of reporting (LOR) | No limits           |
| 10 – 20 x LOR                   | 0% - 50%            |
| > 20 x LOR                      | 0% - 30%            |

### Matrix spike recoveries

Matrix spike sample analysis is the analysis of one or more replicate portions of samples from the batch, after fortifying the additional portion(s) with known quantities of the analyte(s) of interest. The percentage recovery of target analyte(s) from matrix spike samples is used to determine the bias of the method in the specific sample matrix. Recoveries must lie between 70% and 130%.

# Laboratory control sample

The laboratory control sample (LCS) analysis of either a reference material or a control matrix fortified with analytes representative of the analyte class. The purpose of LCS is to monitor method precision and accuracy independent of the sample matrix. Typically, the percentage recovery of the LCS is compared to the dynamic recovery limit based on the statistical analysis of the processed LCS analysis. The ALS acceptance criteria, indicates recoveries must lie between 70% and 130%.

### Surrogate spike recoveries

Surrogate Spikes provide a means of checking that no gross errors have occurred during any stage of the analytical method leading to significant analyte loss. Surrogate recoveries are similar to the analyte of interest in terms of chemical composition, extractability, and chromatographic conditions (retention time), but which are not normally found in environmental samples. Surrogate compounds are spiked into blanks, standards and samples submitted for organic analyses by gas-chromatographic techniques prior to sample extraction. Recoveries must lie between 50% and 150% for all analytes.

### Method blank samples

Method or analysis blank sample analysis is the analysis of a sample that is as free as possible of the analytes of interest, but has been prepared the same manner as the samples under investigation. The analysis is to ascertain if laboratory reagent, glassware and other laboratory consumables contribute to the observed concentration of analytes in the process batch. If below the maximum acceptable method blank (20% of the practical quantification limit), the contribution is subtracted from the gross analytical signal for each analysis before calculating the sample analyte concentration. The method blank should return analyte concentrations as 'not detected'.

The individual testing laboratory conducted an assessment of the laboratory QC program internally. However, the results were also independently reviewed and assessed by GHD.

# Laboratory quality control results

Laboratory RPDs, matrix spike, LCSs and method blanks were within the ALS acceptable ranges with the exception in Table 5.

| a | ble 5                | Summary o                                     | o outriers                                                                                    |                   |                       |                                                                                                                                                               |
|---|----------------------|-----------------------------------------------|-----------------------------------------------------------------------------------------------|-------------------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | Laboratory<br>report | Quality<br>Control<br>Sample                  | Analytes                                                                                      | Sample<br>Code    | Results               | Comment                                                                                                                                                       |
|   | EM1614308            | Matrix<br>Spike                               | Perfluorooctane<br>sulfonic acid<br>(PFOS)<br>6:2 Fluorotelomer<br>sulfonic acid (6:2<br>FTS) | EM161460<br>8-001 | not<br>determi<br>ned | MS recovery not<br>determined, background<br>level greater than or<br>equal to 4x spike level                                                                 |
|   |                      |                                               | Perfluorooctane<br>sulfonic acid<br>(PFOS)                                                    | EM161460<br>8-008 |                       |                                                                                                                                                               |
|   |                      | Frequency<br>of quality<br>control<br>samples | Total metals                                                                                  |                   |                       |                                                                                                                                                               |
|   | EM1700781            | Matrix<br>Spike                               | Perfluorobutane<br>sulfonic acid<br>(PFBS)                                                    | EM170077<br>3-001 | not<br>determi<br>ned | MS recovery not<br>determined, background<br>level greater than or<br>equal to 4x spike level                                                                 |
|   |                      |                                               | Perfluoropentane<br>sulfonic acid<br>(PFPeS)                                                  |                   |                       |                                                                                                                                                               |
|   |                      |                                               | Perfluorohexane<br>sulfonic acid<br>(PFHxS)                                                   |                   |                       |                                                                                                                                                               |
|   |                      |                                               | Perfluorooctane<br>sulfonic acid<br>(PFOS)                                                    |                   |                       |                                                                                                                                                               |
|   |                      |                                               | Perfluoropentanoic<br>acid (PFPeA)                                                            |                   |                       |                                                                                                                                                               |
|   |                      |                                               | Perfluorohexanoic<br>acid (PFHxA)                                                             |                   |                       |                                                                                                                                                               |
|   | ES17001175           | Matrix<br>Spike                               | Perfluorohexane<br>sulfonic acid<br>(PFHxS)                                                   | ES170084<br>5-003 | not<br>determi<br>ned | MS recovery not<br>determined, background<br>level greater than or<br>equal to 4x spike level                                                                 |
|   |                      |                                               | Perfluorooctane<br>sulfonic acid<br>(PFOS)                                                    |                   |                       |                                                                                                                                                               |
|   |                      |                                               | Perfluorooctane<br>sulfonic acid<br>(PFOS)                                                    | ES170117<br>5-012 |                       |                                                                                                                                                               |
|   | 526459-S             | Matrix<br>Spike                               | Zinc                                                                                          | M16-<br>De03611   | 51%<br>(75-125)       | The matrix spike<br>recovery is outside of<br>the recommended<br>acceptance criteria. An<br>acceptable recovery<br>was obtained for the<br>laboratory control |

# Table 5Summary of outliers

| Laboratory<br>report | Quality<br>Control<br>Sample | Analytes                                   | Sample<br>Code    | Results               | Comment                                                                                                                                                                 |
|----------------------|------------------------------|--------------------------------------------|-------------------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                      |                              |                                            |                   |                       | sample indicating a<br>sample matrix<br>interference                                                                                                                    |
|                      | Duplicate                    | Perfluorooctane<br>sulfonic acid<br>(PFOS) | M16-<br>De05163   | 44 %<br>(30%)         | The RPD reported<br>passes Eurofins   mgt's<br>QC - Acceptance<br>Criteria as defined in the<br>Internal Quality Control<br>Review and Glossary<br>page of this report. |
| 529080-S             | Matrix<br>Spike              | Lead                                       | M16-<br>De22472   | 126 %<br>(75-125)     | The matrix spike<br>recovery is outside of                                                                                                                              |
|                      |                              | Mercury                                    |                   | 133 (70-<br>130)      | the recommended<br>acceptance criteria. An<br>acceptable recovery<br>was obtained for the<br>laboratory control<br>sample indicating a<br>sample matrix<br>Interference |
|                      | Duplicate                    | Zinc                                       | M16-<br>De22471   | 39%<br>(30%)          | The RPD reported<br>passes Eurofins   mgt's<br>QC - Acceptance<br>Criteria as defined in the<br>Internal Quality Control<br>Review and Glossary<br>page of this report. |
| ES1701294            | Matrix<br>Spike              | Perfluorooctane<br>sulfonic acid<br>(PFOS) | ES170129<br>4-001 | not<br>determi<br>ned | MS recovery not<br>determined, background<br>level greater than or<br>equal to 4x spike level                                                                           |

# Sample holding times

In laboratory report EM1614608, four water samples exceeded the holding times for pH by 7 days. Major cations analysis was also exceeded by 1 day.

Laboratory report EM1700781, four water samples exceeded the holding times for pH by 6 days.

These are both field parameters and not the main COPCs and therefore these holding time exceedances do not impact the outcomes of the investigation.

# **Evaluation of DQI**

To minimise the potential for decision errors, the sampling and analysis program completed at the site by GHD has been evaluated with consideration of the Data Quality Indicators (DQIs) described in Section 3, namely representativeness, completeness, comparability, precision and accuracy.

• Data representativeness: The sampling methodology ensured all environmental samples were collected by a set of uniform and systematic methods. Laboratory and field QA/QC procedures were carried out to ensure data representativeness. All samples were provided to the laboratory with adequate preservation and in compliant containers as

stated in the laboratory sample receipt documentation. Consequently, data representativeness is considered to have been satisfied.

- Completeness: It is considered that the field QA/QC procedures carried out such as blind duplicate collection frequencies and the analytes tested provide completeness in terms of the required number of field duplicate samples. Laboratory QA/QC sample analysis is considered sufficient to provide a complete overview of QA/QC procedures.
- Precision: Field blind duplicate results reported RPDs below the adopted criterion (30% for inorganics and 50% for organics). GHD therefore considers that laboratory results are acceptable for interpretation in this report.
- Accuracy: Environmental sampling procedures ensured that collection, preservation and laboratory analytical techniques are appropriate for analysis of environmental contaminants.
- Comparability: All field work was conducted with reference to the Australian Standards, which ensured all environmental samples were collected by a set of uniform and systematic methods, as required by GHD's QA system. GHD considers that the laboratory data are of a suitable quality for assessing the environmental status of the site.

The overall review of the QC results from the primary and secondary laboratories indicates that the current analytical data are of an acceptable quality upon which to draw meaningful conclusions regarding impacts at the site as part of this investigation.

# Appendix G – Survey Results



rmk group pty ltd - T/A rmk engineering surveyors address: 2/21 Lindon Crt Tullamarine, 3043 postal: p.o box 182 keilor victoria, 3036 tel: 03 9310 5865 or 03 9310 5875 - fax: 03 9310 5920

| CLIENT:<br>CONTACT:<br>SITE:<br>DATUM:<br>SURVEYOR: | GHD<br>James Lean<br>NSW Fire and Rescue - Macknight Drv Deniliquin<br>MGA/AHD<br>R.Kuzman Last Surveyed: 22/02 |             |           |                    |                |
|-----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-------------|-----------|--------------------|----------------|
| SURVETOR:                                           | R.Ruzman                                                                                                        |             |           | Last Surveye       | ed: 22/02/2017 |
| Well                                                | Easting                                                                                                         | Northing    | TOC Level | Cover/Ground Level |                |
| MW01                                                | 313820.797                                                                                                      | 6063782.963 | 93.688    | 93.770             |                |
| MW02                                                | 313742.547                                                                                                      | 6063752.260 | 92.682    | 92.780             |                |
| MW03                                                | 313776.952                                                                                                      | 6063695.994 | 92.810    | 92.890             |                |
| <b>TBM Tie - In</b><br>PM25244                      | 314112.427                                                                                                      | 6063596.025 | 94.268    |                    |                |
| TIMEOLIT                                            | 011112.121                                                                                                      | 0000000.020 | 01.200    |                    |                |

Regards,

Rob Kuzman mob: 0417 390 878

GHD

133 Castlereagh St Sydney NSW 2000

T: +61 2 9239 7100 F: +61 2 9239 7199 E: sydmail@ghd.com.au

# © GHD 2017

This document is and shall remain the property of GHD. The document may only be used for the purpose for which it was commissioned and in accordance with the Terms of Engagement for the commission. Unauthorised use of this document in any form whatsoever is prohibited. G:\21\25583\WP\219298.docx

\_\_\_\_\_

**Document Status** 

| Revision | Author              | Reviewer     |            | Approved for Issue |           |            |
|----------|---------------------|--------------|------------|--------------------|-----------|------------|
|          |                     | Name         | Signature  | Name               | Signature | Date       |
| A        | N Rosen<br>A Walker | J Hallchurch |            | J Hallchurch       |           | 07/03/2017 |
| 1        | N.<br>Rosen         | J Hallchurch | Abellehinh | J Hallchurch       | Addlehinh | 27/04/2017 |
|          |                     |              |            |                    |           |            |

# www.ghd.com

